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1 

CHAPTER 1 INTRODUCTION 

Biosensors are prominent devices in the medical field, which are proliferating in other 

domains such as forensic industries, national security, and ecological monitoring (water and air) 

[1]. Especially, electrochemical field-effect transistor (FET)-based biosensors are attracting much 

attention due to their compatibility with electronic chips to achieve real-time data, low power 

consumption, label-free detection of specific biomolecules, and low-cost mass production [2]. 

Traditional FETs consist of a semiconducting channel connected with two electrodes (source and 

drain) where gate electrodes manipulate channel conductance by using an electrostatic field called 

the gating effect [2]. Generally, the gating effect is produced by applying a voltage through a metal 

gate electrode, which is capacitively attached with the semiconductor via a thin dielectric layer. 

However, in the case of a FET-based biosensor, a physical metal electrode is replaced by a specific 

receptor for selective target biomolecules. The trapped charged biomolecules generate a gating 

effect and change the conductivity of the channel, which is easily measured by transistor 

characteristics such as the source to drain current [3, 4]. Silicon dioxide (SiO2) is usually used as 

a dielectric layer in transistors, but in biosensors, it is replaced by polymers and lipids, i.e., a 

bioreceptor, which can be easily functionalized on the semiconducting channel by using selective 

linkers as shown in Figure 1.1 (a).  

For a semiconducting channel in FET-based biosensors, many materials have been 

categorized for better performance. These materials can distinguish according to their structures, 

such as bulk, i.e., 3 dimension (3D), and nanomaterials, such as 0 dimension (0D), 1 dimension 

(1D), and 2 dimensions (2D). Among the two types of semiconducting materials, nanomaterials 

are attracting much attention because of their high surface to volume ratio that provides higher 

sensitivity. In nanomaterials, 0D and 1D such as fullerene (C60), Si nanowires, and carbon 
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nanotubes (CNT) are well studied as semiconducting materials for biosensor applications to drive 

high current with small changes in gate potential [3-5]. Despite the higher sensitivity of 0D and 

1D materials, there are difficulties in the fabrication process, which is the major hindrance in the 

success of 0D and 1D technologies [6, 7]. The top-down method to fabricate 0D and 1D materials 

is expensive, and the production rate is slow, whereas the bottom-up approaches have severe 

integrability issues that hinder the practical usage of these structures [8]. These issues can be 

eliminated by using 2D materials which have pristine structure and can provide an excellent 

electrostatic effect due to the thin atomic layer [9]. The main parameter in FET based biosensor, 

which improves the efficient electrostatic from the gate to the semiconducting channel is the 

natural length scale (λ) as demonstrated in Figure 1.1 (b) [10]. The natural length depends upon 

the gate capacitance (𝐶𝑔) and semiconducting channel permittivity (𝜀𝑠) as well as thickness (𝑡𝑠) as 

illustrated in expression 1.1. 

𝜆 = √
𝜀𝑠

𝐶𝑔
⁄ 𝑡𝑠 … … … … … … . . (1.1) 

 To achieve a better electrostatic effect in the FET transistor, λ should be smaller than the 

channel length (Lg) [11]. From equation (1.1), λ is directly proportioned to the thickness of the 

semiconductor. Hence 2D materials are highly promising for the semiconducting channel, where  

Figure 1.1 : (a) Schematic of FET based Biosensor with source and drain, biorecepter, and target 

molecules (b) Conduction band profile of tradition FET  
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𝑡𝑠 i.e. thickness is in nanometer size. Therefore, 2D material possesses better electrostatic effect 

by varying the small magnitude of the gate potential.  In addition, 2D materials are easy to pattern 

due to planar structure, and dangling bond free surface, which is well suited as a semiconducting 

channel in FET than 1D and 0D materials. 

In the 2D domain, graphene has shown great potential since last decade because of their 

exclusive properties in electrical, optical, mechanical, and chemical [14]. After the great 

achievement of graphene, recently, some new materials interest has emerged in 2D transition metal 

dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 [14]. The properties of ultrathin 

2D TMDs are intriguing fundamentally as well as technologically, in contrast of graphene, which 

is semi-metallic in nature, TMDs have a direct bandgap in monolayer and indirect in bulk [16]. 

Monolayer TMDs bandgap and carriers (n-type or p-type) can be tailored between compounds 

depending on their chemical composition [14, 15]. Due to the variation in the chemistry of different 

compounds and the crystal structure tends towards dramatic changes in their electronics properties, 

TMDs nanosheet has been widely studied and applied in various applications.  

Despite these merits, the performance and consistency of such atomic layer crystals are 

easily affected by supporting substrate interaction. This interaction of supporting substrate and 

atomic layer TMDs implies that the control of interface is vital for the performance and reliability 

of electronic devices. In specific, SiO2 substrate are highly disordered morphology as well as 

chemically active due to the trapped atmospheric gases, chemical species, unidentified functional 

group, and electrostatic charges [12]. Therefore, transferring another layer of 2D TMDs on the top 

of SiO2 cannot contribute to charge transport clearly, which leads to the unreliable function of 

every single device. In recent years, many efforts have been made to enhance the quality of the 

substrate active layer interface such as using Poly(methyl methacrylate) (PMMA) and polymer 
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electrolytes [9] which elude chemical bonding or surface roughness and improve mobility, but it 

cannot be useful in specific applications such as biosensor. In addition, suspended 2D layer devices 

have been reported by wet etching silicon dioxide underneath the monolayer. Freestanding 2D 

TMDs has shown better performance than the supporting on the SiO2 substrate in terms of back 

gating electronic conduction [13]. However, the existing SiO2 requires hazardous chemical 

etchants such as hydrofluoric acid (HF), which is difficult to handle and affects the 2D film 

structure and purity [14]. Secondly, freestanding MoS2 sags between the two electrodes because 

of the large spacing (~ 2 µm), which makes it impossible to coat another layer such as hafnium 

oxide (HfO2) and antibodies on top of monolayer. Therefore, this structure impedes making top 

gate FET biosensors and integrated circuits, which allows for only back gating. However, the back 

gate FET requires more power (input gate voltage) to turn ON the device than the top gate, which 

hinders making a low power and highly sensitive FET-based biosensor because of the sensitivity 

of a sensor in the subthreshold region inversely proportion to the change in input gate voltage 

discussed in chapter 5 [15, 16]. Secondly, when linkers/antibodies are directly attached to the 

sagging bare channel, the transduction mechanism is the combination of the electrostatic gating, 

direct charge transfer, and mobility modulation. This type of structure cannot provide reliable 

output. Therefore, it is desirable to eliminate the density of defects by covering the bare channel 

material with insulating material and then functionalizing linkers and antibodies on the top of the 

insulator for reliable output and specific detection [15, 17].  
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

The first biosensor was presented in 1962 by Clark and Lyons based on the enzyme 

electrode biochemical to detect the chemical components in the blood [1]. Since then, a steep 

progression in bio-sensing technology is evolved and create a significant impact on global human 

healthcare, environmental monitoring, drug delivery, and food safety [18]. The biosensor consists 

of the transducer that produces a measurable signal by varying physical or chemical properties of 

the active material. Till now, there are various types of transducing mechanism investigated and 

commercialized from which optical, piezoelectric, and electrochemical are well known. In optical 

sensing, change in the light absorption, reflection, and emission are occurred due to the variation 

in biomolecules [19]. Whereas, piezoelectric transducer works on the change in mass induced by 

the change in the concentration of bio-recognition event [20]. Lastly, electrochemical transducers 

comprise a change in the electrical impedance, potential, current, and modulation of the 

conductance by means of the sensing materials [21]. From these three types, electrochemical 

Figure 2.1 Flow chart of elements of the biosensor (sampling, biological receptors, transducers, 

and detection) 
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transducers are gained more attention due to the easy fabrication, fast in response, portable, and 

low power requirement [22]. Electrochemical transducers can be further distinguished according 

to their electrical interface with the samples and electronics system, as shown in Figure 2.1. From 

these electrical interfaces, FET based device are well known due to the excellent sensitivity and 

selectivity, cost-effective wafer-scale fabrication, label-free detection, and easy to integrate with 

modern electronic devices such as a smartphone.  

2.0 FET-based biosensor 

Field Effect Transistor (FET) based biosensor is the excellent combination of biological 

analytes and electronics, where biomolecules related elements induce potential on the gate and 

change the output current in between two electrodes called source and drain. The gate electrode is 

capacitively coupled with the semiconductor channel by a dielectric layer, which brings the 

modulation in the channel through electrostatic effect. In the FET based biosensor, the gate voltage 

is given from the electrolyte buffer solution, i.e., the conductance variation in the channel 

modulated by the ions present in the electrolyte. Therefore, such type of biosensor is known as an 

ion-sensitive field-effect transistor (ISFET). In ISFET, semiconducting materials play a significant 

role because the sensitivity and response time of the sensor depends upon the transconductance in 

the channel. Hence, many semiconductors are evaluated and investigated for better electrostatic 

effect from the gate in the biosensor domain [23]. The first-generation semiconductors used in 

ISFET as a channel material are a silicon (Si), gallium arsenide (GaAs), silicon carbide (SiC), 

gallium nitride (GaN), and indium gallium arsenide (InGaAs). These materials are well known in 

electronics industries for consistency in output response and having a matured fabrication 

technology. However, due to the bulk atomic structure, the electrostatic effect from the gate is not 

severe, which leads to the reduction of the sensitivity, recovery time, and the speed of response. In 
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recent years, nanomaterials are generated an enormous amount of interests in the semiconducting 

channel due to the high surface-to-volume ratio and decrease the mean free path of an electron, 

which increases the performance of the sensors [24].  

2.1 Nanomaterials 

As a materials dimension reduced in the nanometer regime (1-100 nm), the surface to 

volume ratio, i.e., the ratio of surface atoms to the interior atoms is high. This type of structure is 

beneficial in the semiconducting channel of ISFET because of the external influence (electrostatic 

effect from the gate) penetrates interior as well as surface atoms, as shown in Figure 2.2 (a) and 

(b). Therefore, a small change in the charged particles or biomolecules on the gate electrode brings 

a significant variation in conduction of nanomaterials, which can increase the sensitivity and 

reduce the detection limit. The atomic arrangement in the nanometer domain is confined, which 

reduce the internal scattering phenomenon of electron and decrease the mean free path [25, 26]. 

This advantageous atomic arrangement helps to enhance mobility as well as reduce the response 

time of detection. In addition, some nanomaterials are easily functionalized with the bioreceptor 

without any modification for specific detection of the biomolecule due to the tailoring of the 

wettability [27, 28]. Therefore, nanomaterials-based ISFET provides the best sensing platform by 

Figure 2.2  Electrostatic effect of biomolecule (a) bulk materials (b) nanomaterials 
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offering an excellent interface with bioreceptor, facilitate the binding of biomolecules, and reduce 

overall system power due to nano-level of operation.    

The performance of the nanomaterials in semiconducting channel depends upon the 

structure and the morphology, which are distinguished in 0D, 1D, and 2D. Each dimension exhibits 

unique properties that contribute tremendous potential in biosensing and bioelectronics 

applications. 0D and 1D are known as the first generation of the nanomaterials such as fullerene 

(C60), Carbon nanotubes (CNT), Silicon nanowires, gold nanoparticles, etc.  These materials have 

shown better performance in FET based biosensor by driving high current with small gate potential 

from charged particles and biomolecules [29]. Detection of the single-molecule and improvement 

of the sensitivity with these structures have been reported. Despite the various merits of 0D and 

1D, this technology is not successful in flourishing at biosensor domain due to the low electronic 

mobility, bandgap tuning is vigorous and impossible to fabricate in large scale. These flaws of the 

1D and 0D nanomaterials are eliminated in 2D structure due to the pristine nature, compatible with 

recent nano/microfabrication, and easy to tune the bandgap.       

2.2 2D Materials 

In 2004, a single layer of graphite had been isolated by Andre Geim’s group at the 

University of Manchester, known as graphene [30]. Prompted by these an ample number of 

reviews and articles have been publishing on 2D materials and its applications. The emergence of 

2D materials has significantly changed the path of FET based sensors. These materials are 

biocompatible, extremely sensitive, and feasible of batch mode fabrication. Patterning of 2D 

materials has further broadened the biosensor and bioelectronics applications. Numerous 

techniques for patterning of 2D materials have been recognized in the past decades [31-35]. It has 

just begun to apply a photolithography technique for patterning graphene films [36, 37]. Shortly 
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the market for 2D materials is expected to compete for the reliability of silicon-based electronic 

sensor because of designing in micro and nanoscale. Furthermore, patterning these nanomaterials 

on various substrates holds promising development in healthcare wearable, and portable, flexible 

sensors [38, 39]. In this section, properties of the various 2D materials are discussed along with 

the feasibility of the patterning as well as there potential application in the biosensor domain.  

There are various methods has been performed to acheive one atomic layer sheets. 

Micromechanical cleavage, also known as micromechanical exfoliation is one of the technique to 

get yielding films containing several layers of 2D materials [40]. Laser ablation and photo 

exfoliation are a controlled technique to achieve a 2D layer by removing material from the solid 

surface using laser beam [41]. Liquid-phase-exfoliation is a method to extract individual layers 

from solid materials in the liquid environment that involves three steps dispersion in a solvent, 

exfoliation, and purification [42, 43]. Chemical vapor deposition (CVD) is a widely used method 

to achieve 2D monolayers and fabricate large area films of single to few layers [44, 45]. This 

method is inexpensive and scalable to fabricate 2D material devices because of easy to transfer on 

a non-specific substrate like SiO2/Si [46].  

2.2.1 Graphene 

Graphene is the first example of one atom thick layer of tightly bond sp2 carbon, which 

provides a whole new range of unusual properties for investigating, as shown in Figure 2.3 (a). 

Many of the extraordinary properties of graphene stem from its peculiar electronic bandgap and 

dimensionality in which the electrons mimic relativistic particle [47]. Therefore electrons in 
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graphene are usually known 

as massless Dirac Fermions, 

which is ideally suitable to 

study the relativistic effect of 

condensed matter physics 

[48]. As shown in Figure 2.3 

(b) at a single point, the 

valence and the conduction band in graphene touch each other which compromise few electronics 

states near the Fermi level [49]. That is why graphene is usually called semi-metal or a zero 

bandgap semiconductor [50]. Single point contact makes graphene bandgap highly vulnerable to 

any change of electric field, doping, mechanical deformation, and adsorbates. This fragility of 

graphene bandgap opens the door to a new area in the sensing field encompasses some of the 

highly sensitive sensors [51, 52]. 

A graphene-based FET biosensor was demonstrated by Yinxi et al. by detecting the E-coli 

bacteria [53]. CVD grown graphene was functionalized by linkers and anti-E-coli to achieve 

specificity, as shown in schematic Figure 2.4 (a). It is interesting to notice that, E-coli induce the 

hole on the graphene sheet and increase the conductivity on the left side of the Dirac point, as 

shown in Figure 2.4 (b). Drain current-gate voltage (ID-VLG) transfer curve of bare graphene, and 

functionalize steps of linkers, anti-E-coli, ethanolamine, and tween 20 is demonstrated in Figure 

2.4 (c). Drain current-Drain voltage (ID-VD) also performed at different concentration of the E-coli 

bacteria to detect the limit of the sensor as illustrated in Figure 2.4 (d). The detection limit of 

graphene biosensor was found to be 10 CFU/mL, which vary the conductivity of the graphene by 

3.24%. This graphene sensor demonstrates high sensitivity, easy to fabricate, high response time, 

(a) (b) 

Figure 2.3 (a) Molecular bond of the Graphene (b) Band gap 

of Graphene [49]. 
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and label-free detection, which demonstrates the 2D materials has potential in the next generation 

of biosensing. However, the absence of a bandgap in graphene makes this material unsuitable in 

the semiconductor field. In case of the small bandgap/semimetallic semiconductors, electrons can 

tunnel through barrier very easily and increase the leakage current and reduce the performance of 

the sensor by increasing the subthreshold swing. Thus, researchers are diverted their interest to the 

other 2D single layer semiconducting material which has an appropriate bandgap to turn ON/OFF 

devices and negligible leakage current. In specific, considerable attention has been centering on 

the single-layer semiconducting materials, such as TMDs monolayer. 2D TMDs demonstrates very 

unique properties in the physical, optical, and electrical domains [54, 55].  

 

 

Figure 2.4: (a) Graphene based FET sensor for detecting the E-coli bacteria (b) ID-VLG curve of 

the FET before and after incubation of the E-coli bacteria; 100 CFU/mL. (c) ID-VLG of the bare 

graphene, linkers, anti E-coli, Ethanolamine, and tween20. (d) ID-VD characteristics at different 

concentration of the E-coli [53]. 
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2.2.2 TMDs 

TMDs monolayer is 

one atom thick 

semiconductor, where 

atomic composition 

contains MX2 structure (M 

is a transition metal element 

from group IV, group V or 

group VI whereas X is a 

chalcogen). As shown in Figure 2.5 (a), TMDs form the layered structure of the arrangement X-

M-X with two chalcogen atoms separated by transition metal atom in the hexagonal plane [56]. In 

semiconducting 2D TMDs, bulk layer posseses an indirect bandgap, whereas single layer contains 

direct gap. In case of Molybdenum disulfide (MoS2), the bulk indirect bandgap is 1.3 eV while 

single layer direct band gap is 1.8 eV [57]. This direct bandgap makes the MX2 semiconducting 

material suitable for many electronics and optoelectronic applications [58, 59]. 

The most studied 2D TMDs is MoS2, which is similar to the graphene and has a thickness 

equivalent to the unit cell, which is hold by by weak van der Waals forces. MoS2 planes contain 

molybdenum atoms sandwiched between two Sulphur atoms which demonstrate high electronic, 

mechanical, optical, and chemical properties [60, 61]. Therefore, 2D TMDs such as MoS2 shows 

remarkable properties in the field of sensing applications [62, 63]. 2D TMDs are mostly stable in 

a liquid as well as oxygen comprising environmental medium because of the basal plane does not 

contain any dangling bonds, which facilitate their capable incorporation into sensing application 

[64]. Graphene and its oxides are semi-metallic contain either no or negligible band gap which 

(a

) 
(b) 

Figure 2.5 (a) Molecular diagram of MoS2 (b) Band gap of 

MoS2 [57] 
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limits this material to make more sensitive sensors (mostly FET based sensors). However, the 

overall sensitivity of device-based 2D TMDs, i.e., MoS2 is much more significant because of the 

existence band gap (1.8 eV). The band structure in 2D MoS2 contains d-orbital of Molybdenum in 

which 4 electrons from Mo fill the bonding state and the surface layers completed via lone pair of 

electrons [65, 66]. The d-orbital hybridization of MoS2 leads towards the indirect to direct bandgap 

when it is exfoliated into a single layer, as shown in Figure 2.5 (b) [67, 68].  It has demonstrated 

that a single layer MoS2 Field-effect transistor (FET) has turn ON/OFF ratio more than 108, which 

is specifically advantageous for highly sensitive FET based sensors. The maximum free career 

mobility was estimated 400 cm2/Vs at room temperature whereas such high mobility of free 

carriers is impossible without high permittivity layers. The carrier lifetime of MoS2 is ~100 ps, 

and the diffusion coefficient is ~20 cm2/s [69]. This diffusion coefficient and carrier lifetime are 

apposite for making electrochemical and electric field-based sensors.  

Figure 2.6 (a) shows the schematic of the MoS2 based FET biosensor, where the first-time 

dielectric layer has functionalized with bio-receptors rather than the active material (2D materials) 

[16]. Because most of the specific molecules such as linkers and antibodies functionalize directly 

on bare channel surface which creates defects on the material and brings the considerable variation. 

In other words, when linkers/antibodies are directly attached to the bare channel, the transduction 

mechanism is the combination of the electrostatic gating, direct charge transfer, and mobility 

modulation. The combination of the gating effect can provide false results and does not measure 

the real concentration of the target molecules. Therefore, it is desirable to eliminate the density of 

defects by covering bare channel material with insulating material and then functionalize linkers 

and antibodies on the top of the insulator [5]. In such type of the architecture of FET biosensor, 
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Sarkar et al. achieved 723 sensitivity of pH sensing and 196 for the streptavidin at subthreshold 

region (SS) after functionalization of the dielectric layer as illustrated in Figure 2.6 (b) and (c) 

[16].  

2.3 Challenges in 2D material: Transport and Scattering mechanism in 2D materials   

The 2D material has the potential to create a significant impact on a large number of 

applications ranging from electronics to the energy system, catalysis, new generation sensors, etc. 

A large number of patents and articles are coming from the field of the 2D materials regarding 

synthesis, physical properties, and their applications. When graphene added in the 2D material 

family, it shows incredible achievement in the area of material science. Then, other materials have 

been investigated who has a unique bandgap structure, chiral fermions, biocompatibility, and 

Figure2.6: (a) Schematic of MoS2 biosensor with HfO2 dielectric coating, bioreceptor, and target 

biomolecules with Ag/AgCl biasing from the electrolyte (b) ID-VLG profile of different pH (3,4, 

and 5) (c) ID-VLG profile of buffer and 100fM streptavidin [16] 
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rendering the quasiparticle in it formally identical to massless [48]. These properties of the 2D 

material can be useful in real applications such as FET based biosensors by enhancing the 

sensitivity and reliability of detection at low power [70]. However, the plane of the 2D layer has 

confined the transport and scattering of the carriers [71]. The following primary scattering 

mechanism that affected the mobility of the carriers: (a) acoustic and optical phonon scattering; 

(b) surface interface phonon scattering; (c) Coulomb scattering at charge impurities; (d) roughness 

scattering. The amount of scattering phenomena affect the carrier transport governs the thickness 

of the layer, temperature, carrier density, effective mass, phonon, and electronic band structures 

[72].    

Coulomb scattering is also one of the critical cause to reduce the mobility of electrons in 

2D materials. This phenomenon happens because of random charge impurities located in the 2D 

material or on its supporting surface [73]. The dielectric environment can improve mobility, as 

demonstrated for graphene [74] as well as for MoS2 [75]. The bandgap and carrier concentration 

in the 2D material can tailor by using ionic impurities, but the mobility reduces because of 

scattering, the choice of doping depends upon the specific device performance. However, in 

extremely thin 2D materials (single atomic layer), the effect of roughness scattering and surface 

phonon is significant [76, 77].  

However, despite from different 

scattering phenomenon in 2D 

materials, the presence of substrate 

scattering confines the electron 

mean free path to less than a micron which considers the significant barrier to developing devices 

from these low dimensional materials as shown in Figure 2.7  [78, 79]. Interface between low 

Figure2.7: Scattering effect from substrate [80]. 
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dimension material and supporting substrate plays a critical role in the performance of the sensing 

field or any other devices [80]. For instance, SiO2 is the standard substrate for 2D material device 

fabrication which seems highly disordered topographically and chemically as well as it may harbor 

atmospheric gases, unknown functional group, chemical adsorbates and charges along with 

corrugation. This type of interface distortion affects the repeatability of the sensor data and 

decrement of mobility disturbs the response time and sensitivity of detection.  

2.4 Solutions for Scattering 

The 2D material has always required the support to fabricate a device. The surface of the 

supporting substrate is highly disordered topographically as well as chemically for such thin 

nanomaterials, which creates a scattering phenomenon and reduce the overall mobility and the 

consistency of the device [81].  There are various attempts have been taken to increase the mobility 

of 2D nanomaterials by upgrading the substrate. The high dielectric medium can be useful to 

reduce coulombic scattering and increase the mobility of the film. Lin et al. have demonstrated by 

coating a thin layer on the supporting substrate of electrolyte PEO and LiClO4 ,which increase the 

mobility and reduce the contact resistance [82]. Bao et al. demonstrated that Poly(methyl 

methacrylate) (PMMA) could provide high dielectric support and enhance the mobility and 

transport of electron in the MoS2 monolayer by eliminating the chemical bonding and surface 

roughness at the supporting substrate interface [83]. However, to reduce trapping of charges at the 

interface and upgrade transport properties, the 2D material should be suspended without any 

support seems a promising strategy towards high sensitive sensors and digital electronic devices. 

It has reported that suspended 2D material shows more mobility than the supported one [84].  
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2.5 Fabrication of Suspended 2D FET process flow  

It has demonstrated that single and few layers of MoS2 encapsulated with the high dielectric 

layer on a supporting substrate is very useful for FET’s application [85, 86]. However, substrate 

disorder topography, unknown functional group, chemical adsorbates reduce the conductivity of 

the 2D material. To abbreviate these consequences and achieve high conductivity in 2D MoS2 Jin 

et al. and coworkers demonstrated suspended MoS2 FET on SiO2 substrate by means of e-beam 

lithography and etching of insulator layer i.e. SiO2 [87].    

As shown in Figure 2.8  (I) (a) Mechanical exfoliated MoS2 transferred on an n-doped SiO2/Si 

substrate (300nm SiO2 thickness) followed by e-beam lithography to create metal electrode for 

electrical characterization. Then, to acheive suspended MoS2, oxide layer etched in BOE (Buffer 

Oxide Etch) solution has been carried out to etch away half of the oxide thickness as shown in 

Figure 2.8 (I) (b). Afterward suspended MoS2 device carefully transferred in ethanol solution and 

then dried out in critical point dryer (CPD) as illustrated in Figure 2.8 (I) (c) & (d). Figure 2.8 (II) 

Figure 2.8  

(I) MoS2 device fabrication process (a) creating contacts via e-beam lithography on the top of 

supported MoS2 crystal (b) Etch SiO2 in Buffer Oxide Etch and (c) followed by entanol washing 

and then critical point dryer is used to remove all wet contaminants (d) Final schematic 
(II) Final device image of suspended MoS2 underneath the electrodes (a) optical microscope (b) 

SEM (c) AFM (d) AFM line profile [88]. 

(I) (II) 

(a) (b) 

(c) (d) 
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(a) shows the optical image of suspended MoS2 and gold electrode whereas Figure (II) (b) (c) (d) 

shows SEM, AFM, and a line profile of AFM image. In this experiment Jin et al. and co-worker 

verified the mobility of suspended MoS2 is 0.9 cm2/Vs and supported one is 0.1 cm2/Vs. Whereas 

on/off ratio is improved an order of magnitude in the suspended one, i.e., 105 [88]. This process of 

wet etching of SiO2 underneath of 2D materials process has been employed in different ISFET 

sensor, where electrode spacing varies from the 1 µm to 2 µm.  

2.5.1 Suspended MoS2 FET device 

Ionic liquid salt 

contains mobile ions (cations 

and anions), which are useful 

for  ISFET sensing [89]. When 

an electric field is applied, ions 

in the liquid accumulate, 

forming an electric double 

layer on the top of the device 

by creating a nanogap 

capacitor with large 

capacitance. Ionic gating can induce the charge density is usually an order magnitude greater than 

the traditional back gating. Wang et al. and coworkers demonstrated the effect of ionic gating in 

the suspended MoS2 monolayer [84]. In this case, they have eliminated the scattering effect comes 

from the SiO2/Si substrate as well as shown the top and bottom side of electric double layer gating. 

A droplet of ionic liquid deposited, as shown in the schematic of Figure 2.9 (a), and an optical 

image in Figure 2.9 (b). These devices usually suspended after addition of the Ionic liquid (IL). In 

(e) 

Figure 2.9 Ionic gating of suspended MoS2 device (a) Schematic 

and (b) optical image (c) SEM image of suspended device (d) I-

V characteristics of different bias voltage (e) I-V transfer curve 

of suspended MoS2 at two different temperature [84]. 
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this device, the conductance of typically increase 103 or 104, and the enhanced mobility found 46 

cm2/(V s).  Fabrication process to achieve suspended layer is same as mentioned in above [82]. 

The mechanically exfoliated MoS2 sheet is coupled with Ti/Au electrodes and acquire free-

standing layer by etching SiO2 in hydrofluoric acid, as shown in Figure 2.9 (c). Suspended MoS2 

devices characterized in vacuum environment at room temperature as illustrated in Figure 2.9 (d), 

I-V characteristics at a different back gate voltage (mobility ~2.1 cm2/ (V.s)). A suspended IL 

gating device improves the performance regarding conductance increment in order of 103 or 104, 

and mobility of the device is 46 cm2/(V s). To recognize carrier transport mechanism in the 

fabricated devices by applying IL gating, Wang et al.  and co-workers measured their transfer 

curve characteristics at different gate voltage as shown in Figure 2.9 (e) at temperature 300K and 

265K. As gate voltage increased, the device conductance also improved from ∼1 to ∼180 μS, 

which indicates the Fermi level is shifted near to conduction band. As shown in Figure 2.9 (e) inset 

at lower gate voltage I-V curves are linear, but it becomes nonlinear at higher gate voltages. This 

IL gating suspended devices demonstrate such a drastic enhancement in conduction, which 

suggests that IL reduces the Schottky barrier at the interface of metal and the semiconductor. Also, 

the improvement in mobility indicates that charge impurities reduced because of the IL help to 

reduce electron scattering. These type of structure is very suitable for building the suspended 

reliable pH sensor.   

2.6 Hypothesis 

Among various 2D materials, TMDs has demonstrated impressive performance in FET 

based biosensor because of the tunable bandgap, biocompatibility, and high mobility. The 

nanometer thickness of these materials requires supporting substrate (SiO2/Si) to fabricate the FET 

devices. However, supporting substrate has uneven morphology, harbor atmospheric gases, 
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unknown functional group, corrugated charges, and chemical adsorbates, which degrades the 

transport properties of the 2D materials by scattering phenomenon. This effect implies that the 

interface control between 2D material and the supporting substrate is essential due to the 

unreliability output response from every single fabricated sensor.  In recent years, many works 

have been published to reduce the scattering effect by increasing the dielectric properties and 

reducing the surface roughness of the supporting substrate by using PMMA and PEO [90]. 

However, due to biocompatibility, fabrication, and reproducibility issues, these layers cannot be 

employed in the biosensor domain. The other method to make freestanding 2D materials without 

interacting with the supporting substrate. The previous work for the fabrication of free-standing 

2D material devices achieved by using the acid release of underlying SiO2 substrates [91]. 

Freestanding 2D TMDs has shown improvement of carrier transport as compared to the supporting 

substrate. However, this type of fabrication possesses etching of SiO2 underneath of 2D materials, 

which affects the purity and electronic properties of the 2D materials and counterfeit the idea of 

reliable and precision sensing of every single device. Secondly, this process consists of wide 

spacing in-between two electrodes due to which the 2D materials sags between electrodes, as 

demonstrated in Figure 2.10 (a) and (b). Therefore, the coating of another layer i.e. linkers, 

antibodies, and dielectric layer is impossible, which elude the specific detection of the 

biomolecules and other elements. In this architecture, the top gate transition is also impossible due 

to sagging nature of 2D TMDs, which leads to the only back gate transition. However, back gating 

requires more power than the top gate because of the thicker dielectric layer and reduce the 

mobility by two folds  as shown in equation 2.1.  

µ𝑛 =
𝐿

𝐶𝑊
.
∆I𝑑𝑠

∆𝑉𝑔
.

1

𝑉𝑑
… … … … … … … … (2.1) 
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Where µ𝑛 is the mobility of the electron, L is the length of channel, C is the capacitance, W is the 

width of the transistor, ∆𝑉𝑔is the change in gate voltage,  ∆I𝑑𝑠 and 𝑉𝑑 are drain current and the 

voltage respectively. From the above equation, the mobility of the electron is inversely 

proportioned to the gate voltage. However, ∆𝑉𝑔 depends upon the thickness of the dielectric layer, 

which is defined as 

 back gate thickness 

                                    t
suspended, BG

= (t
supporting

)+(t
oxide

)+(t
vacuum

)  

and top gate thickness  

                                      t
suspended, TG

= (t
oxide

) 

Therefore, ∆𝑉𝑔 is much larger in the back gate than the top gating and increase the overall mobility 

i.e. large electrostatic effect on channel material with the small change in gate potential. Due to 

which top gate transition is important in 2D FET sensor to build highly sensitive and low power 

device. Finally, the freestanding 2D TMDs achieved using E-beam lithography technique to 

engrave electrodes, which is not suitable for large-scale fabrication. Therefore, the objective of 

this research is to study the scattering phenomenon at the interface of supporting substrate and 2D 

Figure 2.10 (a) Free standing layer of 2D TMDs (MoS
2
) is sagging on wide spacing electrode 

and (b) functionalization of antibodies, which might interact with supporting substrate 
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material. Secondly, synthesize the 2D TMDs materials to fabricate freestanding top gate 2D based 

FET biosensor via photolithography without any wet chemistry.     

2.7 Dissertation Objectives 

The objectives of this thesis are to fabricate suspended 2D TMDs FET sensor without any 

interface effect from supporting substrate for reliable sensing. (i) 2D TMDs plays a pivotal role in 

channel material to achieve a better electrostatic effect by a small variation in gate potential. 

Therefore, it is essential to synthesize highly crystalline single-layer TMDs for creating ohmic 

contact with gold electrodes and achieve high gating effect. (ii) Freestanding of 2D materials can 

be achievable through nano-gaps without any wet etching of SiO2. Therefore, the other task of this 

research is to fabricate nano spacing electrode through a novel self-assembly photolithography 

technique, transfer 2D materials by innovative dry stamping method, and evaluate the traditional 

top gate FET characterization. (iii) Finally, test this suspended 2D material devices in terms of the 

sensor by attaching antibodies of E-coli bacteria to the dielectric layer and check the sensitivity 

and lower detection limit of this pathogens through FET characterization.     

2.7.1 Synthesis of 2D materials via CVD and FET characterization 

Study the effect of growth parameters on 2D material morphology and achieve high 

crystalline nature of TMDs flakes. Two-dimensional (2D) nanomaterials, such as transition metal 

dichalcogenide (TMD) provide an opportunity to make ultra-sensitive sensors because of its 

atomic layer [92]. The existence bandgap of TMDs shows tremendous potential for detecting 

biomolecule (E-Coli) through FET biosensors. In this chapter, different TMDs have been 

investigated by tuning the bandgap, structure, and achieve crystallinity through the CVD 

technique. The characterization of TMDs crystallinity was evaluated through Raman, X-ray 

powder diffraction (XRD), Scanning electron microscope (SEM), Atomic Force Microscope 
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(AFM), Transmission electron microscopy (TEM), and Energy Dispersive Spectroscopy 

(EDS/EDAX) mapping. FET characterization is also performed to check the work function of 

MoS2 TMD with metal electrodes.  

2.7.2 Fabrication of nanogaps and characterization of suspended FET 

The nanogap fabrication was achieved via a novel self-assembly technique, where 

chromium (Cr) was used as an inflation layer. The optimization of nanogap achieved by controlling 

the expansion of the Cr layer and the thickness of the gold electrodes. Wafer-scale fabrication of 

nanogaps attained in the controlled environment. A novel dry transfer method of 2D material was 

developed, which provides proper placement of CVD grown 2D TMDs on the desired area by 

keeping its crystallinity intact. These nano-spacing electrodes not only give suspension but also 

provide robust strength to the atomic layer, which remains freestanding after coating of the 

Hafnium oxide (HfO2) as well as linkers and antibodies as explained in the schematic Figure 2.11 

(a) and (b).  The freestanding of the MoS2 layer was characterized by using TEM, electron energy 

loss spectroscopy (EELS) mapping, AFM mapping, and Raman mapping. The FET 

characterization such as subthreshold swing and the threshold voltage of suspended MoS2 and 

WSe2 performed with top gate and back gate.   

 

Figure 2.11 Free standing layer of 2D TMDs (MoS
2
) is robust on nano spacing electrode and (b) 

allows the functionalization of antibodies without interacting with supporting substrate 
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2.7.3 Testing pH and E-coli bacteria concentration via suspended FET biosensor 

The pH sensing on the HfO2 strongly depends upon the protonation and deprotonation of 

ions.  The pH value of the electrolyte solution varies the charge on the HfO2 dielectric surface, 

which was measured through suspended MoS2 FET characterization. Different pH values were 

performed and achieved ultra-high sensitivity on suspended ISFET sensor. Secondly, E-coli 

negatively charged biomolecule was used to check the specificity of the biosensor. Self-assembly 

molecule (SAM) was optimized to fabricate appropriate sensing of the E-coli. The deviation of the 

threshold voltage and the conductance of a transistor can be used to measure the number of charged 

biomolecules (E-coli) onto MoS2 quantitatively. For reliability, three different suspended 

biosensor was fabricated and compared the sensitivity.  

After completion of this research, it is expected to understand the fundamental nature of 

the 2D materials by tuning the composition, which leads to change in the properties at the quantum 

level. An innovative process flow is developed to distinguish between the suspended and supported 

2D material electronic devices and learn the effect of the scattering. Finally, investigate the 

suspended device in terms of there reliability by sensing the pH and biomolecules.   
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CHAPTER 3 SYNTHESIS OF 2D MATERIALS VIA CVD METHOD AND FET 

CHARACTERIZATION 

 

3.1 Synthesis of 2D materials  

Transition metal dichalcogenides (TMDs) have attained much interest due to their two-

dimensional structures and novel properties [93, 94]. In monolayer, the band structure of few 

TMDs transfer from indirect to direct bandgap due to interlayer interaction [56]. These properties 

of TMDs appeal to several potential applications in molecular electronics, optoelectronics, 

catalysis, and battery system [61, 95]. TMDs such as molybdenum disulfide (MoS2), molybdenum 

diselenide (MoSe2), Tungsten disulfide (WS2) and Tungsten diselenide (WSe2) most extensively 

studied due to its promising properties in the field of electronics to energy conversion [75, 96]. 

Many approaches have been considered in an account like chemical exfoliation, mechanical 

exfoliation, and chemical vapor deposition (CVD) to obtain a high quality single atomic layer of 

2D TMDs  [97-99]. Among all synthesis processes, CVD method draws much attention because 

of the scaled-up production and give better control over the sum of layers if growth happens via 

surface-mediated synthesis. All the CVD method reported to date for growing MoS2 is used 

chemically inert solid-state dielectric substrates [100].   

3.2 Chemical Vapour Deposition 

Challenges involved in the CVD growth of the high crystalline TMDs layer are (a) 

continuous flow of Sulphur (b) amount of Transition metal oxide (TMO) and sulfur (c) Distance 

between the TMO and Sulphur (d) Growth time and (e) most important is temperature. The 

optimization of these parameters is vital to achieving the high crystalline TMDs on SiO2/Si wafer. 

The flow of Sulphur optimized by the appropriate placing of the boat in the quartz tube to achieve 

a continuous stream at growth time. However, the amount of TMO is significant for high 

crystalline flakes because it is found in our previous CVD growths experience if the quantity of 



www.manaraa.com

 

 

26 

precursor is increased then the bulk layer of TMD is deposited on the SiO2/Si substrate. For 

instance, MoO3 can quickly reduce at elevated temperature in the presence of Argon gas to form 

monolayer MoS2, but the amount of MoO3 is increased then the bulk layer gets deposited on the 

dielectric surface due to a higher amount of MoO3 reduction. Therefore, the amount of transition 

metal oxide (TMO) (such as MoO3 and WO3) is optimized to gain high crystalline atomic layer. 

The distance between TMO boat and Sulphur boat is also an essential parameter because it 

determines the concentration of Sulphur in every zone of the quartz tube at growth time. It is found 

that if the TMO boat is present high concentration zone, then the star flakes are deposited which 

consists of a high percentage of the Sulphur whereas if the distance is far then immature flakes is 

formed which consists of the bulk nucleation. Both types of crystals are resistive in nature, which 

impede the transport of the electron and reduce the sensitivity of sensor [101]. The other two 

parameters are the backbone of the TMDs growth i.e. growth time and temperature. As per our 

experimence it was found that if the pressure is increased then the reduction of MoS2 flake is 

continuous with Sulphur which turns into star flakes and if the pressure is reduced then the 

immature flake is formed as well as other particles such as Molybdenum oxy-sulphide(MoOxS) 

and metallic MoO2 are also present on the substrate [102]. Finally, temperature optimization is 

essential for high crystalline TMDs growth. These parameters are optimized in our studies to 

achieve a single atomic layer of the 2D TMDs. 

3.2.1 Temperature and precursors optimization 

Figure 3.1 (a) illustrated CVD unit assembled in our lab to grow 2D materials, where 

Sulphur/Selenium (chalcogen) are placed to the upstream whereas sprinkled TMO is used to 

synthesized nanomaterials in Ar environment. The atomic layer 2D MoS2 were grown on a SiO2/Si 
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substrate by using the CVD method as schematically illustrated in Figure 3.1 (b). To grow MoS2 

(growth procedure same for all 2D TMDs), a ceramic boat contains sprinkled MoO3 precursor 

underneath of the SiO2/Si chuck (1 × 1 cm2) is placed at the high-temperature zone of the horizontal 

quartz tube and a small quartz boat contain sulfur pallets are kept in low-temperature region. CVD 

process was carried out at different temperature viz., 650º C to 800º C to find the optimal growth 

conditions for MoS2 enriched with high crystallinity. The typical process flow of CVD grown 

MoS2 as shown in Figure 3.1 (c), where Argon gas (Ar) pass for 250 sccm for 20 mins to remove 

all environmental gases and then ramp up the temperature till 760ºC in 15 mins and maintain the 

temperature for 20 mins called as growth time to achieve 2D TMDs followed by cool-down 

process.  

Initially, the different temperature has been categorized to obtain a high crystalline 

monolayer of MoS2. It is determined that the low-temperature growth of MoS2 demonstrate the 

bulk deposition of material on Si/SiO2 substrate [101] as illustrated in the SEM image of Figure 

Figure 3.1. (a) In-house CVD for TMDs growth (b) Schematic representation of the 

experimental setup for CVD growth. (c) Process flow of typical MoS2 growth. 
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3.2 (a). The corresponding EDAX elemental profile exposed the non-homogeneous distribution of 

Mo and S atoms in a nanosheet on the SiO2/Si substrate, as shown in Figure 3.2 (b). During MoS2 

growth, it was hypothesized that the kinetics of sulphurization process affects the layer orientation 

and morphology of nanosheets. At 650° C, due to the low reactivity of sulfur, their interaction with 

Molybdenum precursors proceeds sluggishly, which provides fewer nucleation sites and leads to 

the formation of few-layered planar nanosheets. At low temperatures, 600-700 ℃ the reaction is 

incomplete and leads to the formation of intermediate products due to the slow activity of reactants 

[92, 103]. The intermediate products are MoO3-x and MoO2, which are not adequately reduced on 

the SiO2/Si surface, as shown in the following chemical reaction 3.1 and 3.2.  

                                                        𝑀𝑜𝑂3 +
𝑋

2
𝑆 → 𝑀𝑜𝑂3−𝑥 + 𝑆𝑂2 … … … … … (3.1) 

                                                                    𝑀𝑜𝑂3 +
1

2
𝑆 → 𝑀𝑜𝑂2 +

1

2
𝑆𝑂2 … … … … … (3.2) 

XRD spectra were performed to confirm the bi-product such as MoO3 and MoO2 with the MoS2 

nanoflakes. This characterization suggested that the reaction does not take place entirely at low 

temperature i.e. 650° C as shown in Figure 3.3 (a). Whereas Figure 3.3 (b) shows the optical image 

of all bi-products including sufficiently reduced MoS2, this flake is not useful for the FET based 

biosensors due to the presence of impurities and bulk nature of MoS2. For further evaluation of 

Figure 3.2: (a) SEM image of MoS
2
 CVD growth at low temperature (b) EDAX of MoS

2
 at low 

temperature  
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bulk material, Raman spectra were performed on the low temperature deposited MoS2 flakes, 

which shows the nanosheets encompasses multiple numbers of layers as illustrated in Figure 3.3 

(c). However, a bulk sheet of TMDs consists of the indirect bandgap due to which the electron is 

not able to tunnel properly from valence band to conduction band and leads to the reduction of the 

mobility.  

For achieving the proper reduction of the transition metal oxide (TMO), we emphasize 

several experiments via elevating temperature by 10° C. After some iteration, at 760° C, Sulphur 

reactivity is augmented and produces many nucleation sites which tend to form a large number of 

nanosheets on the surface of SiO2. At elevated temperature, reductive nature of SiO2 also enhances 

the reduction of MoO3 to convert into MoO3-x (x>1) nucleolus, which further reduces by the 

diffusion of Sulphur vapors and converts into metallic MoO2. More sulfur vapors diffuse along the 

lateral side, which provides atomic layer orientation of MoS2 nanoflakes [104] as shown in the 

following chemical reation 3.3, 3.4 and 3.5.  

                                             𝑀𝑜𝑂3 +
𝑋

2
𝑆 → 𝑀𝑜𝑂3−𝑥 + 𝑆𝑂2 … … … … … . (3.3) 

                                             𝑀𝑜𝑂3−𝑥 +
𝑋

2
𝑆 → 𝑀𝑜𝑂2 + 𝑆𝑂2 … … … … … (3.4) 

                                         𝑀𝑜𝑂2 +
𝑋−7

2
𝑆 → 𝑀𝑜𝑆2 +

3−𝑋

2
𝑆𝑂2 … … … … … (3.5) 

Figure 3.3: (a) XRD of MoS
2
 growth at lower temperature (b) Optical image of the biproducts 

at lower temperature (c) Raman mapping of bulk MoS
2
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In our inhouse CVD unit, we achieved a high-quality atomic layer of the MoS2 at 760°C, as shown 

in Figure 3.4 (a) and (b). The density of the triangles can be varied on the SiO2 surface by managing 

the concentration of TMO. The high amount of the TMO leads to the bulk formation of the MoS2 

with impurities. Therefore, it is important to maintain the concentration of TMO precursors 

underneath the growth substrate. In our case, we have sprinkled very small amount of the MoO3 

or WO3 on the ceramic boat to achieve a high quality of triangle with a medium density, as shown 

in Figure 3.4 (c).  

The other important factor, which creates the TMD, i.e. MoS2 sharp edges is the amount of Sulphur 

(selenium for selenide based TMDs), sharp edges related to the high crystalline nature of atomic 

layer. The crystalline TMDs exhibits the appropriate ratio of the Mo and S atoms in the atomic 

layer crystal (Mo:S::1:2). Therefore, it is essential to maintain the appropriate amount of the S 

content while growing because it attributes the electronic properties (crystallinity) of TMDs. 

3.2.2 Pressure Optimization 

The other parameter interrelated the Sulphur/Selenium concentration in the tube is pressure 

[105]. As the Sulphur/Selenium evaporate in the CVD tube, the pressure also gets increased. This 

pressure can be controlled by outgoing flow and the position of the Sulphur/Selenium boat, which 

maintain the amount of sulfur/Selenium content in the tube. The following discussion of growth 

Figure 3.4: (a) SEM image of large MoS
2 

(b)Optical image of MoS
2
 high magnification (c) 

Optical image of MoS
2
 at low magnification  
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based on the pressure dependency i.e. chalcogen of the TMDs structure. In this section, we have 

iterated different concentration of Sulphur for achieving atomic layer MoS2, whereas the same 

parameters are implemented for selenium and another atomic layer growth. As the pressure is close 

to the atmospheric pressure (0.5-1 KPa), then the rectangular shape crystal form, which shows the 

TMO i.e. MoO3 is not adequately reduced as shown in Figure 3.5 (a) and (a’). When the further 

increase of the pressure (Sulphur content), these rectangle granular convert into the hexagonal 

shape and leading towards the atomic layer as shown in Figure 3.5 (b) and (b’). However, this type 

of structure does not show excellent electronic properties due to the uneven concentration of Mo 

and S atoms. Secondly, the flakes consist of multiple layers, which leads to the indirect bandgap 

of the MoS2. When the pressure is further increased from (5 to 8 KPa), the MoO3 powder reduced 

Figure 3.5: Morphology of flakes associated with Pressure, which is related to the sulfur 

concentration while growing MoS
2
 in the CVD (a) low magnification image of square flakes at 

0.5-1 KPa (a’) high magnification image of square flake at 0.5-1 KPa (b) low magnification image 

of hexagonal flakes at 1 KPa (b’) high magnification image of square flake at 1 KPa (c’) low 

magnification image of triangular flakes at 5 to 8 KPa (c’) high magnification image of triangular 

flake at 5 to 8 KPa (d) low magnification image of star flakes at <20 KPa (d’) high magnification 

image of star flake at <20 KPa 
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totally and form a triangular shape crystal. This triangular shape has the proper amount of Mo and 

S distribution and consists of the single atomic layer, which possesses the direct bandgap, as shown 

in Figure 3.5 (c) and (c’). As the maximum pressure reaches (<20 KPa) this triangular shape 

converted into a star and other morphology as shown in Figure 3.5 (d) and (d’). In conclusion, the 

Sulphur content is significant to determine crystallinity and the shape of the atomic layer, which 

define the electronic properties of the 2D materials via tuning the bandgap. 

3.2.3 Growth Surface Optimization 

The catalyst i.e. surface is also an essential factor for the structural growth of the TMDs. 

To study the different orientation, we have grown TMDs on SiO2 and the 3D structure of carbon 

material. The quartz and SiO2 surface provide lateral growth of the atomic layer due to the 

diffusion of sulfur on the edges of nucleation of MoO3 at high temperature (discussed in section 

3.2.1). Therefore these surface have shown growth of atomic layer parallel to the surface i.e XY 

plane, as shown in Figure 3.6 (a) and (a’). However, in the 3D structure of the carbon cloth (CC), 

the growth is dramatically augment the reduction of MoO3 and promote the formation of MoO3-x 

(x>1) to react with selenium/Sulphur vapor which further converts into MoSe2/MoS2 layers. The 

reducing of MoO3 to MoO3-x (x>1) suggest that carbon is more reductive at elevated temperature. 

Carbon assisted in creating MoO3-x (x>1) on the layer of CC, and it is well known that further 

reduction of MoO3-x (x>1) to MoO2 at present of selenium/sulfur vapor and hydrogen generates 

TMDs (MoS2 and MoSe2) layers. In addition, the defective nature of CC makes it more reactive 

for molybdenum source, creating a sizeable interacting surface for MoO3-x. Thus, carbon fibers 
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help to enhance the growth of TMDs with improved reactivity and efficiency. The mechanism 

behind the formation of nanoflower morphology can be explained as following, the vertical 

orientation of MoS2/MoSe2 nanosheets is due to the 3D nature of the CC surface that restricts the 

diffusion of selenium vapor to the bottom side and paves the way for nucleation followed by 

growth in a perpendicular direction by diffusing van der Waals layer [106]. Therefore, the diffusion 

occurs in the perpendicular direction exhibits the growth of the nanosheets on the YZ plane. 

Afterward, the vertically aligned discrete nanosheets coalesce to reduce the surface energy and 

convert into a nanoflower morphology. Figure 3.6 (b-d, low magnification) and 3.6 (b’-d’, high 

magnification) SEM images demonstrated that the MoSe2 growth density, lateral dimensions, and 

morphology vary with temperature. Interestingly, it was found that the MoSe2 nanosheets 

patterned into nanoflower morphology and distributed evenly at 850 °C, whereas incomplete 

Figure 3.6: Growth and Morphological characterization on different substrate: (a-a’) low and 

high magnification of triangle on SiO2 substrate (b-d) low and (b’-d’) high magnification SEM 

images of MoSe
2
 morphology grown at (b, b’) 760 °C (c, c’) 850 °C (d, d’) 950 °C. Scale bars: 

10 µm and 1 µm.  
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growth and excessive coverage of nanosheets were observed at 760 ºC and 950 ºC, respectively. 

These experiments illustrates that the structure of the catalyst surface is essential to achieve 

appropriate morphology for particular applications.  

3.3 Characterization of monolayer TMDs 

Since it was already reported that the controlling the chemical composition in the reaction 

leads to the transition of the crystal shape from hexagon to the inverted triangle as well as other 

properties in the embedded systems [117]. To achieve the preferential edge orientation to dominate 

electronic transport activity, compositions of elements (Mo and S) are very critical because it 

elucidates the shape, edge, and magnetism of monolayer MoS2 [118]. This investigation is 

explained the comprehensive experimental observations about the morphology of TMDs 

monolayer is a function of the chemical potential of Mo-rich or Se-rich. Based on density 

functional theory (DFT) and experiments in previous reports, it was found that the equivalent 

number of both elements in flake makes it suitable for electronic device and sensing application 

[119, 120]. Therefore, the TMDs was characterized by SEM and energy-dispersive X-ray 

spectroscopy (EDAX) mapping, Transmission electron microscopy (TEM), Raman, X-ray 

diffraction (XRD), and Atomic force microscopy (AFM). 

3.3.1 Scanning Electron Microscopy and energy dispersive X-ray spectroscopy  

SEM images have shown the flakes are triangular and high in density, which determined 

the concentration of both materials Mo and S/Se are in the same proportion as displayed in Figure 

3.7 (a). This makes CVD grown crystal with optimized parameters has excellent electronic 

properties, which lead towards the better transduction mechanism in the FET device. Interestingly, 

TMDs nanosheets turn into the atomic layer and triangular morphology at 760º C. To confirm the 

distribution of the composition, we have performed EDAX mapping, which demonstrates that 
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distribution of Mo and S are homogeneously distributed on atomic layer on SiO2 as shown in 

Figure 3.7 (b) and (c). The even distribution of the composition possesses better tunneling effect 

of electron and reduce the contact resistance with metal to achieve an ohmic contact. We have 

performed SEM and EDAX imaging of the selenide based nanoflowers to show both conducting 

and the nonconducting surface can provide high crystalline 2D TMDs as shown in Figure 3.7 (d), 

(e), and (f).   

 

 

 

Mo S 

Figure 3.7: (a) SEM image of large MoS
2
 on SiO2 surface (b) and (c) EDAX mapping of MoS2 

triangle with Sulphur and Molybdenum atom distributed evenly.  (d) SEM image of MoSe
2
 

nanoflower high magnification (e) and (f) EDAX mapping of MoSe2 nanoflower with Selenium 

and Molybdenum atom distributed evenly.   
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3.3.2 Transmission Electron microscopy  

A microscopic understanding of the CVD grown TMDs is essential to evaluate the 

crystallinity and the defects in the film. We have performed TEM and HRTEM on single-layer 

MoS2 by transferring on the Copper TEM grid (Transfer method mentioned in section 3.4.2). 

Figure 3.8 (a) demonstrates the 4k×4k resolution of the TEM image, where aperture size 150 µm 

at 200 kV. Figure 3.8 (b) represents the low magnification HRTEM image of MoS2, whereas 

Figure 3.8 (c) shows the high magnification HRTEM of single-layer MoS2. This image displays 

monolayer film consists of negligible defects, which helps the electron tunnel from the film very 

quickly. Optimized parameters of CVD grown film has a proper arrangement of the atom and 

possesses high crystallinity with a direct bandgap.  

To distinguished the multiple layers atomic arrangement of the monolayer, we have grown the 

pyramid structure of MoS2 and performed STEM and EDAX mapping. Figure 3.9 (a), (b) & (c) 

illustrates the SEM and EDAX mapping of the pyramid structure (stack of MoS2 nanolayers) 

grown at the long period of the time. This crystal consists of the improper composition of the 

elements (Mo and S), which has a single layer on the edges and the number of layers increase 

when it goes to the center of the flakes. Figure 3.9 (d) represents the STEM mapping of the single 

Figure 3.8: (a) Low magnification TEM mage of MoS2 (b)Optical image of MoS
2
 high 

magnification (c) Optical image of MoS
2
 at low magnification (d) (e)&(f) EDAX mapping of 

MoS2 triangle with Sulphur and Molybdenum atom distributed evenly.   
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layer, and the multiple layers, which approves the atomic arrangement in a single layer (white 

color) is stable with each Mo consists of 2 S atoms, whereas two layers of the nanosheets have 

uneven crystal structure and geometry with a high number of defects (more than the single layer). 

These studies show that the geometry of atoms in a single layer with a lower number of defects 

consists of better electronics and optical properties with high carrier mobility. The corresponding 

EDAX elemental mapping exposed the uneven distribution of Mo and S atoms in a pyramid 

structure, as shown in Figure 3.9 (e). Therefore, a stack of multiple layers is not viable for FET 

based applications due to the indirect bandgap and uneven structure of the layer increase the mean 

free path of the electron. 

 

Figure 3.9: (a) SEM image of pyramid MoS
2 

(b) and (c) EDAX mapping of pyramid structure 

of MoS2  (d) STEM image of the 1L and 2L (e) EDAX spectra of pyramid MoS2. 
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3.3.3 RAMAN Spectroscopy 

Raman spectroscopy is another way to investigate the number of layers in the 2D 

nanoflakes. The crystal structure of the MX2 (M is the transition metal, and X is the chalcogen) 

belongs to the D3h point group [107]. At the center of the Brillouin zone (Г), there are 18 lattice 

phonon modes present [108].  These dynamical modes are as follows Γ = 𝐴1𝑔 + 2𝐴2𝑢 + 𝐵1𝑢 +

2𝐵2𝑔 + 2𝐸1𝑢 + 𝐸2𝑢 + 2𝐸2𝑔 + 𝐸1𝑔. However, in TMDs the the two Raman modes are very active 

in the atomic layer, 𝐸1𝑔 mode and  𝐴1𝑔, which involves the in-plane and out-plane vibration of the 

transistion metal and chalcogen [109]. For investigating CVD grown MoS2 monolayer, as prepared 

Figure 3.10: Raman characterization of triangular (a) MoS
2
 (b) MoSe

2
 (c) WS

2
 (d) WSe

2
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MoS2 triangle are characterized by Raman Spectroscopy using 514 nm laser. This characterization 

shows the phonon vibration modes of both the in-plane (E2g) and out-of-plane (A1g) of TMDs. As 

the number of layers reduces, the A1g mode shifts to the lower number called as softening, whereas 

E1
2g mode shifts to higher number referred to as stiffening [121, 122]. This description is very 

suitable for illustrating the number of layers in the crystal because monolayer has higher mobility 

than the bulk one which can easily distinguish in the Raman spectroscopy. Figure 3.10 (a) 

represents the MoS2 Raman spectroscopy of the triangular structure. The difference between the 

two phonon modes represents the 18.4 cm-1, which is the characteristics of the single atomic layer. 

Similarly, Raman spectra of other TMDs such as WS2, MoSe2, and WSe2 were carried out, as 

shown in Figure 3.10 (b),(c)& (d). The acquired Raman spectrum of MoSe2 characteristics at 760 

°C has associated the atomic layer, where A1g mode found at around 241.82 cm-1 and E1
2g active 

mode observed around 287 cm-1. These numbers have confirmed the agreement with recent Raman 

studies of MoSe2 in terms of the softness of E1
2g peak and stiffness of A1g peak formation of layers 

MoSe2 nanosheets [98, 110]. For WS2 CVD grown monolayer the phonon modes found at E12g at 

356.3 cm−1 and A1g at 417.8 cm−1. Whereas the WSe2 flakes exhibit one prominent peak E1
2g and 

other is small shoulder A1g at 250 cm−1 and 256.8 cm−1 respectively. From these characteristics, 

we can differentiate the number of the layer in the triangle of sulfide and selenide based TMDs. In 

sulfide-based TMDs, the phonon peaks difference (A1g and E1
2g) represents the number of the 

layer, whereas in the selenide based one phonon peaks becomes stiff and other gets broadened 

illustrates the stacking of the atomic layer [111]. In our case, CVD grown TMDs demonstrate the 

single layer, which is characteristics of the direct bandgap and high crystallinity.  
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3.3.4 X-ray diffraction (XRD) 

X-ray diffraction (XRD) is one of the essential characteristics for evaluating the 

crystallography of film and its epitaxial nature. Figure 3.11 (a) represents the XRD of the MoS2 

triangle, which exhibits four peaks at 14.7°, 33.3°, 37.7°, 44.7° corresponds to the (002), (100), 

(103), and (103) respectively [112]. The characteristics peak of the MoS2 was detected at 14.7°, 

which is sharp and exhibits the FWHM 0.53°. Figure 3.11 (b) illustrated the crystal structures of 

MoSe2, which was systematically investigated by using XRD. At appropriate temperature 760ºC 

for MoSe2, peak intensities are high, which indicate the high purity of the prepared samples. The 

XRD diffraction peak around 13.9º from the family of (002) planes, which corresponds to the 

interlayer distance of MoSe2 layers [51]. This peak positions fit with the (00l) plane of the MoSe2 

(JCPDS No. 77-1715) [52, 53]. The obtained peaks in XRD spectra of molybdenum sulfide and 

selenide are well defined, and absence of MoO3 (byproducts) fingerprints indicates that as grown 

MoS2/MoSe2 are having high purity.  

 

Figure 3.11: X-ray diffraction pattern of of CVD grown triangular flakes where samples displays  

its  characteristic  (002)  plane  peak  and  their  relative  intensities at  temperature 760°C, which  

is  the  signature  of  the  well stacked  crystalline  structure of (a) MoS2 and (b) MoSe2  
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3.3.5 Atomic Force Microscopy (AFM) 

To know the thickness of the CVD grown triangular TMDs, we have performed the AFM 

mapping on triangular shape MoS2. Contact mode AFM was used to scan the triangle on the 

surface of SiO2. Due to the sub-nanometer thickness of the 2D TMDs, we have to customize the 

cantilever tip for the AFM scanner, which has less distortion due to the thickness and perpendicular 

to the substrate. After several iterations, we have achieved the mapping of TMDs and measure the 

thickness of the layer.  Figure 3.12 (a) represents the topography of triangular monolayer TMD, 

whereas Figure (b) shows the single line profile of atomic layer. This characteristic represents that 

the thickness of the MoS2 is 0.8 nm, which is satisfied with the previous reports of the monolayer 

thickness of the MoS2 [113]. 

3.4 Electrical characterization of CVD grown TMDs 

3.4.1 Fabrication of 2D FET 

After characterization and confirming the crystallinity and the thickness of the monolayer 

TMDs, we have fabricated the FET devices to measure the voltage current response of the device. 

To achieve the FET device, we have fabricated two gold electrodes by using optical lithography. 

The electrodes patterned on the 4 inch of Si/SiO2 wafer. At first, the wafer was cleaned using 

Figure 3.12: (a) AFM mapping of the triangular MoS
2
(b) Line profile of the triangular of MoS

2
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piranha solution, which removes all inorganic and organic contamination from the surface. Next, 

positive photoresist was coated at 3000 rpm for 1 min, followed by prebake for 2 mins at 120°C 

on a hot plate. After prebaking, the wafer was processed for mask alignment and expose at 35 

mJ/cm2 energy. Later, wafer was developed to achieve Interdigited electrodes (IDE) patterned. A 

thin Titanium (15 nm) and Gold (70 nm) was deposited through electron beam evaporator onto a 

substrate. The photoresist layer was then stripped out using acetone in an ultrasonic bath.  The 

process of fabrication of electrodes as shown in Figure 3.13.  

After achieving the electrodes, it is essential to transfer monolayers TMDs from growth 

substrate (catalyst) to the arbitrary substrate (gold electrodes). CVD grown TMDs transfer on the 

patterned substrate by using the etch transfer method. In this technique PMMA (Poly(methyl 

methacrylate)) as a sacrificial is used, where it coat on the growth surface as shown in Figure 3.14 

Figure 3.13: Process flow to achieve 2 µm IDE by using optical lithography 
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(a) step I. The PMMA coating parameter are 3000 rpm for 45 seconds and then postbake at 120 

ºC on the hot plate for 1 min. The PMMA deposited substrate dice properly into 5 × 5 mm2 and 

place in the KOH solution as shown in Figure 3.14 (a) step II. SiO2 present undereneath of the 

TMDs monolayer starts etching in KOH solution at 50ºC in DI water. SiO2 completely etch out in 

1 hr by leaving floating fragile layer (PMMA and monolayers) on the water surface as shown in 

Figure 3.14 (a) step III. Then the arbitrary substrate (glass slide) is used to transfer monolayer from 

KOH solution to DI water and keep it for 2 Hrs. After removing all the residues of KOH from the 

fragile layer, we performed the RCA cleaning i.e. remove all inorganic and organic contamination 

from the TMDs as shown in Figure 3.14 (a) step IV. After cleaning, carefully TMDs have 

transferred on the fabricated IDE electrodes as shown in the Figure 3.14 (b) & 3.14 Figure (c).  

 

 

Figure 3.14: (a) Process flow for wet transferring of MoS
2
 triangle (I) MoS2 triangles on the 

substrate (II) Coating of the PMMA as a sacrificial layer (III) Etching of the SiO2 in the KOH 

solution (IV) RCA cleaning of the fragile MoS2 flake to remove inorganic and organic 

contamination (b) Low magnification, SEM image of the IDE electrodes (scale bar 100 µm) (c) 

High magnification of IDE electrode with MoS2 traingular flake (scale bar 10 µm).   
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3.4.2 FET characterization of MoS2 and WSe2 

In the FET characterization, it is found that MoS2 creates an n-type of the channel due to 

the presence of Sulphur vacancies and fermi layer present near to the conduction band. The 

intrinsic majority carrier in the MoS2 is the electron with the bandgap of 1.8 eV, which is direct in 

the monolayer and indirect in the bulk form. The fabrication of back gate MoS2 FET is discussed 

in the previous section 3.4.1 and 3.4.2, where we have used 300 µm highly p-doped Si wafer. 

Ti/Au metal was used as metal contact as a source and drain, and the gate voltage is applied from 

the backside of the Si as shown in schematic Figure 3.15 (a). Figure 3.15 (b) represents the SEM 

image of the transferred triangle on the IDE electrodes, where the spacing between source and 

drain are 2 µm. From this, it is clear that the MoS2 channel is interacting with the supporting 

Figure 3.15: (a) Schematic of the back gate 2D MoS
2
 (b) SEM image of the MoS

2
 triangle 

transfer on electrodes, which are separated by 4 µm. (c) I
D
-V

BG
 linear transfer curve where gate 

potential is applied from the back side of the highly doped wafer  (d) Logarithmic I
D
-V

BG
 

transfer curve of MoS
2
 where SS is 1.5 V/dec (d) I

D
-V

DS
  characteristics to check the ohmic 

contact.   
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substrate between the electrodes. Afterward, electrical characterization was carried out at the room 

temperature by using the Keysight B2912A source meter. Here, we have first illustrated current-

voltage (ID-VBG) transfer curve by sweeping back gate voltage (VBG) from -30V to 20V, where 

biased voltage (VDS) is 100mV as shown in Figure 3.15 (c).  The back gate MoS2 FET ON/OFF 

ratio found to be 106 with an on-state current 10-7 and off-state current is 10-13. The threshold 

voltage (VT) of the FET to turn on the device illustrated -9V at room temperature. Whereas 

subthreshold swing (SS) exhibits 1.5 V/dec. SS is an essential factor in the FETs, which is defined 

as a change in the current with respective dielectric surface potential, as shown in equation 3.6.  

𝑆𝑆 =
𝑑𝑉𝑔𝑎𝑡𝑒

𝑑 log10 𝐼𝑑𝑟𝑎𝑖𝑛
… … … … … (3.6) 

Where dVgate and Idrain are a change in gate potential and drain current respectively. The mobility 

of the FET sensor is calculated by equation 3.7. 

𝜇𝑛 =
𝐿

𝐶𝑊
.
∆𝐼𝐷𝑆

∆𝑉𝐺𝑆
.

1

𝑉𝐷𝑆
… … … … … (3.7) 

Where,L and W are the channel length and the width, ∆𝐼𝐷𝑆  is the change in current from source to 

drain at achange in the surface gate potential ∆𝑉𝐺𝑆, 𝑉𝐷𝑆 is the drain to source voltage (bias voltage), 

and C is defines as the capacitaqnce of the insulator. C in the back gate FET derive from the 

equation  

𝐶 =
𝜀0𝑥

𝑡𝑜𝑥
=

𝜀𝑟.𝑜𝑥𝜀𝑜

𝑡𝑜𝑥
 

Where, 𝑡𝑜𝑥 is the thickness of the oxide, 𝜀0𝑥 is the relative permittivity of the oxide, which is 

further define as the relative permittivity of the SiO2 and permittivity of the vacuum (8.854187817 

× 1012 F/m). In our case at 300 nm of SiO2 layer, the resulting capacitance of the dielectric layer 

to the semiconductor was calculated 11.45 nF. The mobility of the back gate field voltage is found 
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to be 0.12 cm2/V.s at room temperature from IDS-VBG transfer curve. Figure 3.15 (d) illustrate the 

IDS-VDS back gate characteristics, which represent the 2D material achieved ohmic contact with 

metal electrodes. 

Figure 3.16: (a) Band aligment of source/drain metal for p-type and n-type with the triangular 

WSe2 (b) ID-VBG linear transfer curve of channel WSe
2
 where gate potential is applied from the 

back side of the highly doped wafer at voltage 100 mV and 500 mV (c) Logarithmic scale of 

WSe2 
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Similarly, we have demonstrated p-type of semiconductor by using CVD grown WSe2 

monolayer. 2D WSe2 is ambipolar in nature where it creates p-type or n-type behavior with 

different metals depending on the work function [25−34]. There have a few reports where 

researchers have used this dual behavior to make complementary gate circuits [26,27]. In the 

schematic shown in Figure 3.16 (a), WSe2 possesses p-type functionality when gold is employed 

as a source and the drain, whereas other metal such as Al and Ti creates the n-type FET transistor. 

Therefore, the polarity of electrons and hole injected at the source metal contact determine which 

the type of FET to be formed [114]. Work function differences and Schottky height barrier play a 

significant role with the polarity and injection efficiency of the carriers. Hence the selection of 

contact metal with larger work functions is crucial for having control over the Schottky barrier 

heights [115]. Therefore, in our case, to achieve the p-type FET, we have transferred WSe2 on the 

gold electrode and performed IDS-VBG on two different bias voltages 100 mV and 500 mV. Figure 

3.16 (b) & (c) demonstrate the linear and logarithmic constant bias, where the gate voltage is sweep 

from 0 to -50 V from the back gate of 300 nm SiO2. In this case, the threshold voltage is illustrated 

from the IDS-VDS transfer curve -15V to turn ON the device, and the mobility is found to be 0.021 

cm2/V.s at 100mV bias. 

3.5 Summary and conclusion 

In summary, we have grown semiconducting monolayer and few-layers TMDs by the CVD 

technique. The challenges involved to achieve high crystalline monolayer TMDs in CVD are 

solved by optimizing the flow rate of Sulphur, amount of TMO, pressure, temperature, and growth 

time.  The optimization of these parameters is vital to achieving the high crystalline TMDs on 

SiO2/Si wafer. TMDs growth has been performed on different catalyst substrate to illustrate the 

morphology and the structure. It was found that the SiO2 substrate helped to attain pristine 
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triangular monolayer growth, whereas the other 3D structure of CC employed the vertical growth 

of the TMDs. Afterward, the composition of Mo and S elements elucidate to understand the shape, 

edge and magnetism of 2D TMDs [116]. Therefore, the TMDs were characterized by optical 

microscope, SEM, Transmission electron microscopy (TEM), Raman, X-ray diffraction (XRD), 

and Atomic Force Microscopy (AFM). Particularly, optical, SEM, and EDAX mapping has shown 

the flakes are triangular, which determined the concentration of both materials Mo and S are in 

same proportion. This makes CVD grown crystal has better electronic properties, which lead 

towards the better transduction mechanism. Sulfide and Selenide based TMDs are characterized 

by Raman Spectroscopy using 514 nm laser as illustrated, which represents the presence of the 

phonon vibration modes of both the in-plane (E2g) and out-of-plane (A1g) of TMDs. These two 

modes can be helpful to differentiate the number of layers in the crystal. X-ray diffraction (XRD) 

of MoS2 was performed for evaluating the crystallography of film and epitaxial nature. XRD also 

confirms there is no immature residue in the supporting substrate such as Molybdenum oxy-

sulphide (MoOxS) and metallic MoO2. TEM characterization has been acheived to study the 

molecular structure of flakes which is very important to understand the crystallinity of the material. 

AFM mapping is carried out on the single MoS2 layer to elucidate the thickness, which is found to 

be 0.8 nm. These characterizations demonstrated that the CVD grown TMDs are crystalline 

without defects and proper in composition, which attain better mobility by reducing the mean free 

path of the electron during FET characterization.  

MoS2 and WSe2 FET devices were fabricated to evaluate the electrical characterization of 

TMDs by using photolithography and wet transferring techniques. The overall FET device 

behavior was explained by the mobility of electron and holes through these 2D materials. The 

Back gate voltage is given from 300 nm of SiO2/Si wafer to evaluate the electronic mobility and 
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the SS of the crystal from transfer curve IDS-VBG. CVD grown MoS2 shown ohmic contacts with 

the metal electrodes by achieving mobility of 0.12 cm2/Vs. Whereas CVD grown WSe2 is 

ambipolar in nature, which illustrates both p-type and n-type depending upon the source to drain 

metal electrodes. In our case, we have transferred WSe2 on the gold electrodes and fabricated p-

type of the FET, where the holes are the majority carrier and mobility were demonstrated 0.021 

cm2/V.s.  

At present, we have grown different monolayer materials such as MoS2, WS2, MoSe2 and 

WSe2 on the various catalytic substrate, as shown in Table 3.1. However, from these materials, 

MoS2 and WS2 were found more appropriate for the building the biosensor because of the 

biocompatibility and hydrophobicity [115]. The wettability and the biocompatibility are essential 

parameters for fabricating biosensors because biocompatible material is inactive in the reaction of 

biomolecules and hydrophobicity use to direct attachment of the linkers and antibodies. Due to 

these advantages of Sulphide based materials in the biosensor, we have chosen the MoS2 from 

CVD grown materials library as a 2D semiconducting material for FET based biosensor. 

 

Table 3.1: Different 2D TMDs material grown in the CVD 



www.manaraa.com

 

 

50 

CHAPTER 4 SUSPENDED 2D MATERIALS FET 

4.1 Introduction 

Designing the energy-efficient and steep transistor integrated circuits is the key to enhance 

the global Information and sensing industries. However, 3D materials such as silicon are the 

traditional material used in the FET transistors, which requires high power and trying to scale 

down under 10 nm channel length. This is because when the silicon channel length is reduced, the 

leakage current becomes high even though the transistor in the off state, which loss the electrostatic 

control from the gate. Moreover, in the 3D structure of the silicon, the electron mobility get reduces 

and the mean free path to travel electron from the channel is more, which impedes to make ultrafast 

and ultrasensitive FET devices. Therefore, 2D materials can be overcome these problems due to 

their unusual properties that stem from their quantum and surface effect [117, 118]. Graphene is 

well-studied material in the field of 2D morphology, and it has some extraordinary properties 

like super thin, transparent, highly conductive as well as large mechanical strength [118]. 

However, due to semimetallic in nature, it cannot be implemented in the FET channel. The other 

2D materials are transition metal dichalcogenides (TMDs), which holds great potential for many 

electronic and optoelectronic applications due to heavier carrier effective mass, bandgap is more, 

in-plane dielectric constant is less which leads to the lower down the tunneling effect [119].  

Semiconducting TMDs, such as molybdenum disulfide (MoS2) and tungsten diselenide 

(WSe2) are very well studied materials because of excellent carrier mobility, high ON/OFF ratio 

and good sub-threshold swing in a field-effect transistor (FET) that pave the way towards 

ultimately scaled low-power electronics. In the FET, MoS2 creates an n-type of the channel due to 

the presence of sulfur vacancies and fermi layer present near to the conduction band whereas WSe2 

consists of intrinsic hole mobility which makes p-type of the channel. These semiconducting 2D 
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TMDs with both n-type and p-type intrinsic mobility and thin-film pristine structure (MoS2-0.65 

nm and WSe2-0.7nm) are a suitable candidate for low power consumption FET devices for future 

integrated circuits and bioelectronics.  

4.2 Challenges involve in 2D FETs 

Using these 2D materials, researchers have demonstrated optical and electronic devices by 

tuning its bandgap, surface energy and strain control. Despite direct bandgap and high mobility 

like silicon, the performance and reliability of such atomic layered crystal are easily affected by 

the supporting substrate interaction, as shown in Figure 4.1 (a). 2D materials are fragile in nature 

and it is impossible to make devices without any supporting substrate. However, the interaction 

between supporting substrate and WSe2/MoS2 leads to the reduction of the carrier mobility and the 

increase the subthreshold swing [120]. The mechanism of charge scattering drastically changes 

from substrate morphology by inducing local corrugation and strain, charge impurities, and surface 

phonos. In specific, Si/SiO2 substrate impede the mobility of electron by trapping of charges, 

which imply that interface control is vital for the performance of devices made up by atomic layers 

as illustrated in Figure 4.1 (b). Secondly, the atomic layer on the top of the supporting substrate 

Figure 4.1: (a) Schematic of the 2D top gate FET with the scattering phenomenon from the 

supporting substrate (b) schematic of tunneling of the electron from source to drain with 

scattering effect. 
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cannot contribute clearly mean free path of the electron in 2D materials, which produce 

unreliability in every single device.  

 

4.3 Suspended 2D FET via nanogaps 

Our approach to achieve freestanding 2D materials are creating the nanogap electrode by 

using a self-assembly photolithography technique. Nano-spacing between the thick electrode does 

not allow the atomic membrane (0.65 nm) to touch the supporting substrate and it is present flat 

on the two electrodes and eliminates the interaction of the supporting substrate. This structure not 

only eliminates supporting substrate effect but also reduce the channel length and shows the 

feasibility for further miniaturization of the device. Due to the eradication of the supporting 

substrate, the mobility of the electron/holes is enhanced, which is derived as follows  

𝜇𝑛 =
𝐿

𝐶𝑊
.
∆𝐼𝐷𝑆

∆𝑉𝐺𝑆
.

1

𝑉𝐷𝑆
… … … (𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑎𝑛𝑑 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝐹𝐸𝑇 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦) … … 4.1 

Where L and W are the channel length and the width, ∆𝐼𝐷𝑆 is the change in current from source to 

drain at a change in the surface gate potential ∆𝑉𝐺𝑆, 𝑉𝐷𝑆 is the drain to source voltage (bias voltage), 

and C is defined as the capacitance of the insulator. In the above equation ∆𝐼𝐷𝑆 depends upon the 

gate potential (inversion charges, Qinv) and the transit time (tr) as shown in equation 4.2. 

𝐼𝐷𝑆 =
𝑄𝑖𝑛𝑣

𝑡𝑟
. 𝑊𝐿 … … … … (4.2) 

However, the freestanding nature of 2D material, electron/holes can tunnel very smoothly without 

any scattering from supporting substrate and reduce the time of transit from source to drain. This 

increase the 𝐼𝐷𝑆 which is directly proportional to the mobility of the FET device. Secondly, the 

reduction of channel length further reduces the transit time and lower down the subthreshold swing 
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(SS). SS is defined as the steepness in IDS-VG transfer curve i.e. the time requires to turn ON the 

FET device, which is defined as shown in equation 4.3. 

𝑆𝑆 =
𝑑𝑉𝐺

𝑑 log10 𝐼𝐷𝑆
… … … … … (4.3) 

Therefore, freestanding 2D materials on the nanogaps open up the new avenues in the field of FET 

based integrated circuit and ultrafast sensing domain. 

4.4 Fabrication of the nanogaps 

There have been different techniques reported to achieve nano-gap spacing in-between two 

electrodes such as electron beam lithography and scanning probe microscopy [121-123]. Although, 

these techniques for creating nanogaps between two electrodes are suitable for prototyping, but it 

is impractical for mass production. Therefore, in this section, we are demonstrating suspended 2D 

material devices fabricated by a self-assembly lithography technique to create single or arrays of 

nanogap electrodes for wafer-scale fabrication.  

Nanogap electrodes have fabricated by self-aligned photo-lithography technique, which 

consists of thermally grown 300 nm oxide layer on 330 µm double-sided Silicon wafer. The wafer 

is cleaned via RCA and dried it out in the dryer. By using lift-off method, the first electrode layer 

is patterned by metallization through electron beam evaporation of 10 nm of Titanium, 80 nm of 

Gold and 100 nm of Chromium (Cr) layers as shown in Figure 4.2 steps (I) to (VI). In the first 

electrode, the Cr thickness is more than the gold electrode because Cr acts as a sacrificial layer. 

After step (VI), wafer kept at ambient temperature for overnight results in an oxide layer CrxOy 

form which overhangs few nanometers to 10x nm depends upon the temperature (40ºC to 120ºC) 

on the edges of Ti/Au. Following step (VI), a similar method has been used to deposit the second 

electrode of Ti/ Au, as shown in Figure 4.2 steps (VII) to (IX). While depositing the second 

electrode, enlargement of CrxOy in few nanometers protect second electrode (Ti/Au) to meet the 
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first electrode and creates nanometer spacing. In steps (X) photoresist strips by using acetone 

whereas in step (XI) chromium/chromium oxide layer etch in chromium etchant solution and two 

Ti/Au electrodes which are separated by nanogap retain on Si/SiO2 wafer.  

Here, few parameters were optimized while fabrication such as lift-off resists thickness, 

rpm rate of spinning photoresist, baking, developing photoresist, avoiding the residues during 

fabrication and most important optimization thickness of metal electrode layer. Initially, a lift of 

resist (LOR) considered for the lift-off method. However, a photoresist peeled out the chromium 

layer while doing lift off, as shown in Figure 4.3 (a). This lift-off happens because of the thick 

layer of chromium exert more force while etching photoresist in PGMI remover. In the next batch, 

LOR A has been eliminated, and the self-made recipe was considered, where two layers of Micro-

Figure 4.2: (I) Si/SiO
2
 wafer (II) flood exposure of 1811 (III) Photoresist 1811 coating in 

spinner at 3000 rpm (IV) Exposing and developing 1811  (V) Depositing metal Cr/Au/Ti (VI) 

Lift-off 1811 (VII) Coating 1811 for second electrode (VIII) Developing 1811 photoresist (IX) 

Second electrode metallization Au/Ti (X) Stripping of 1811 and LOR (XI) Two Au/Ti electrodes 

separated by nanogap 
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resist 1811 has patterned and thickness of gold/chromium is reduced. In this new technique, 

patterning the first electrode was carried out by coating the positive photoresist (MICROPOSIT 

S1800) and expose it for 80 mJ/cm2 (flood exposure). Then another layer of photoresist 1811 is 

coated on the top and pattern it with design chrome mask followed by evaporation of the Ti/Au/Cr. 

After patterning three metal layers Ti/Au/Cr, wafer kept for a night to thermal expansion of the 

chromium to achieve nanogap. Nano-spacing between electrodes only depends upon the thermal 

expansion of the chromium. Therefore, it is essential to maintain the temperature as well as 

environmental gases of the wafer constant for overnight. Initially, the thin layer of Chromium is 

reluctant to lift off the second layer of gold, as illustrated in Figure 4.3 (b) due to the Au thickness. 

Therefore, to achieve the proper pattern of the second layer, the thickness of Ti/Au (second layer) 

Figure 4.3 (a) LOR A fabrication of Nanogap (b) Thin layer of Chromium reluctant to lift off 

Au (c) second layer gold and chromium (d) lift of the chromium with constant nanogaps.  
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thickness reduce by 50% of chromium. After optimization of the thickness, lift off the chromium 

as well as second Au electrode was processed in chromium etchant solution, which came out 

effortlessly. Figure 4.3 (c) illustrates the optical image after depositing the second electrode on the 

top of chrome, whereas Figure 4.3 (d) represents the optical image of nanogap after etching chrome 

(sacrificial layer).  

Figure 4.4 (a) represents the optical image of the wafer-scale nanogaps, which has a 

constant spacing throughout the wafer. Figure 4.4 (b) and (c) demonstrate the low magnification 

and high magnification of the array on the SiO2/Si substrate. While nanogap fabrication, we have 

achieved a different range of the nanogaps from 10 nm to 150 nm by varying the temperature and 

environmental conditions. After confirming the process flow to achieve nanogaps at various 

temperature and show the feasibility at wafer-scale, the different substrate has been used to check 

the process flow viability. Given the importance of flexible electronics, we have patterned 

nanogaps on the flexible PET sheet, as shown in Figure 4.4 (d). Figure 4.4 (e) and (f) shows the 

high and low magnification of the nanogaps electrode on the flexible PET sheet 

Figure 4.4 : (a) Wafer scale production of the nanogap with different structures (b) Nanogap 

array device at low magnification (c) high magnification of the nanogap array with proper lift 

of the chromium (d) Wafer scale flexible substrate (e) low magnification of nanogap array on 

the flexible device (f) high magnification of the nanogap electrodes on the flexible substrate  
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4.5 Evaluation of nanogaps 

Self-assembly is considered as a superior technique to fabricate the nanogaps electrodes 

for reliable, reproducible, and wafer-scale fabrication. However, due to the involvement of the whole 

wafer, it is very challenging to check electrodes that are not touching together using SEM and other 

imaging methods. Therefore, I-V characterization has considered for evaluating the connection 

between the two electrodes. As shown in Supplementary Figure 4.5 (a), when the circuit is open, 

i.e., two electrodes are not touching together, then there is no current flowing. However, when two 

metals touch together, then the I-V curve is a straight line with a slope, which resemblance of the 

flow of current, as shown in Figure 4.5 (b). It is a very viable and controlled method to check the 

nanogap electrodes in the whole wafer.  

 

 

 

Figure 4.5: Electrical characterization of nanogaps (a) I-V characterization of open circuit (no 

connection of electrode). Scanning voltage: -0.5 V to 0.5 V. (b) I-V characterization of short 

circuit (connection of the nanogap). Scanning voltage: -0.4 V to 0.4 V 
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4.6 Novel dry stamping method  

The traditional method for transferring the 2D materials on the arbitrary substrate requires 

wet chemistry (detail discussion in chapter 3). However, while transferring the 2D materials in 

nanogaps through the wet transferring method, some of the moisture trap into the nanogap and 

reduce the overall mobility. Therefore, we have developed novel the dry stamping method of the 2D 

TMDs (MoS2) on the nanogaps by using a thin film of PDMS (Polydimethylsiloxane). Initially, 

Figure. 4.6: Dry transfer of CVD grown MoS2 (a) Process flow of dry stamping of MoS2 on 

nanogap electrodes (b) Image of the transferring PMMA on the glass slide (c) Image of aligning 

MoS2 triangle with nanogaps in the microscope & (d) Lift off the micromanipulator on z-axis at 

100°C  
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MoS2 has grown on Si/SiO2 chuck via CVD method, which is controlled technique and provide a 

uniform thickness of atomic layer triangle as shown Figure 4.6 step I. Once the process is done then 

PMMA (Poly (methyl methacrylate)) as a sacrificial layer is coated on the synthesized MoS2 crystals 

(step Figure 4.6 II). In the step Figure 4.6 III, SiO2 was etched out in KOH solution, which gives 

monolayer MoS2 with PMMA sacrificial layer floating on the solution. Afterward this PMMA layer 

clean in DI water and transferred from the solution on the glass slide as illustrated in Figure 4.6  step 

IV and V. However, step I to step V are a traditional method to exfoliate CVD grown atomic layer 

and transfer on the arbitrary substrate, but it is challenging to transfer the micron level triangles on 

the desired region [124]. Therefore, to transfer MoS2 on an appropriate area, dry stamping method 

has been applied, in which PDMS was considered as a transfer film. PDMS stamp layer of 2-3 mm 

thick prepared by using commercially available silicone elastomer kit (SYLGARD® 184). 

Synthesized PDMS stamp placed on the top of the glass slide, where exfoliated PMMA layer easily 

peel out on the PDMS stamp as shown in Figure 4.6 step VI to VIII. Figure 4.6 (b) represents the 

exfoliation of the PMMA layer from the glass slide on the PDMS. The PDMS stamp and PMMA 

have higher surface energy than the glass; therefore, layered crystals are easily peeled out from glass 

substrate [125]. Afterward, the other side of PDMS were carefully adhered on the glass slide and 

mounted on the in-house XYZ micromanipulator, as shown in Figure 4.6 (c). Due to the transparent 

nature of the glass and PDMS, it is easy to locate the triangle as well as nanogap electrodes, which 

was aligned carefully. Once PDMS stamp properly pressed on the nanogaps, the heater present 

underneath of the substrate was raised till 100°C for 15 mins. At 100°C to 120°C PMMA adhered 

on the nanogap electrodes with high surface energy and PDMS wettability changes with temperature 

and degraded it adhesion with PMMA [126]. Finally, the PDMS stamp moved up (z-axis) at 100 °C 
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as represented in Figure 4.6 (e) and PMMA with atomic crystal left behind on the nanogaps electrode 

as illustrated in step IX from Figure 4.6 (a).    

4.7 Characterization of 2D TMDs on the top of nanogaps 

4.7.1 AFM mapping on the suspended 2D materials 

After transferring the nanogap on the top of the electrodes, it is important to evaluate the 

2D TMDs is suspended on the electrodes. Therefore, we have performed AFM mapping via a 

custom-built AFM tip (height-14 µm) from the App nano. This tip is a super sharp whose radius 

Figure 4.7 : Optical image, AFM mapping, and line diagram of nanogaps (a) without 

MoS
2
 (b) with MoS

2
. 
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is less than 3 nm and can be useful for high-resolution mapping i.e. the minimum lateral feature 

size it can detect 0.5 nm. After several iterations, we have successfully able to achieve proper line 

diagram and imaging from the AFM. Figure 4.7 (a) shows the optical image and AFM mapping 

with the line profile of the nanogap area without MoS2 flake. AFM line profile of nanogap 

electrodes demonstrates the step height of 75 nm in between the two Au electrodes, which confirms 

the two metal layers are separated by nanometer spacing. Figure 4.7 (b) represents the optical 

image and AFM mapping of transferred MoS2. AFM line profile of transferred MoS2 on the top of 

nanogap indicates the flat line and no step height, which verify that the atomic membrane is 

suspended and remarkably stiff as well as robust. This stiffness of the atomic layer confirms that 

it is not interacted with supporting substrates and eliminates the scattering phenomena of the 

interface between the 2D material and the holder substrate. This mechanical strength provided by 

nano spacing does not allow the monolayer sags between the electrodes, which permits depositing 

another layer, i.e. HfO2 and for sensing application, it facilitates the attachment of biological 

receptor for selective sensing. 

4.7.2 SEM and Dark field imaging of the suspended 2D material 

To further validate the rigid suspension of the MoS2 monolayer, scanning electron 

microscope (SEM) and dark field image of the MoS2 triangle on the top of the nanogaps were 

performed. Figure 4.8 (a) shows the SEM top view image of the fabricated suspended device, 

where MoS2 is present as a flat membrane on the top of two Ti/Au electrodes. Whereas, Figure 4.8 

(b) represents the dark field image of the MoS2 triangle on the top of the nanogaps; this image 

clearly illustrates that the MoS2 triangle does not sag in between the nanogap spacing, it is 

suspended and flat on the surface. From this imaging, it is clearly illustrated that the MoS2 triangle 

sturdy in between the nanogap spacing, it is suspended and flat on the top of two Au electrodes. 
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4.7.3 Raman Mapping 

To further evaluate the suspension of the 2D TMDs on the nanogaps, we have performed 

the Raman mapping. The Raman spectroscopy gives us experimental evidence to differentiate 

between suspended and supported monolayer MoS2 on Nano gap electrodes. An area of 11pixel × 

8 pixel was selected on the nanogap electrode for scanning Raman map, with excitation energy of 

2.41 eV (532 nm) as illustrated in Figure 4.9 (a). A beam spot of 400 nm was focused on sample 

with 1% power and integration time set to 10%. Raster scanning was implemented, which collected 

about 88 points of the scanning Raman map. Two points P1(supported) and P2(suspended) on the 

map are examine. The Raman peaks at points P1 and P2 show linear intensity change and shift in 

peak positions as shown in Figure 4.9 (b). At a glance, we can see that there is a linear decrease in 

intensity from the supporting substrate. This difference in intensity can be explained by the absence 

of scattering substrate underneath the MoS2. When the Raman beam an incident on the supported 

area MoS2 the signal bounces back with higher laser power than compared to suspended MoS2 in 

Figure 4.8: (a) high magnification SEM image of MoS
2
 on the top of nanogaps (scale bar: 100 

nm) (b) Optical dark field image of MoS
2
 triangle on the top nanogaps. 
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the absence of substrate. On the other hand, the relatively low intensity of suspended MoS2 is due 

to increase in out-of-phase motion of the Sulphur atoms with reduced surface scattering. 

Further inspection of the Raman spectra evaluates that there is a slight shift of 2 cm-1 (blue shift) 

associated with E12g and A1g  on the supported as shown in Figure 4.9 (c). It can be understood that 

changing the number of layers will affect the intensity and location of the E12g and A1g. A blue 

shift of A1g and red shift of E12g is prominent as layer increase as demonstrated in Figure 4.9 (d) 

[127]. In previous reports, it has shown that MoS2 suspended having a red shift due to contributions 

from residual strain, stress and doping [127, 128]. 

Figure 4.9: (a) Optical image of nanogap and highlighted Raman mapping area points P1 - 

supported and P2 - suspended, (b) Schematic of device arrangement for Raman mapping, (c) 

Raman spectra for supported and non-supported MoS
2
 and (d) Photoluminescence intensity of 

MoS
2
 on supported and non-supported substrates. 
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4.8 Depositing the dielectric layer 

Top gating is very important in the FET devices because the back-gate FET requires more 

power (input gate voltage) to turn ON the device than the top gate, which hinders making a low 

power integrated circuits and highly sensitive biosensor. Secondly, it is found that the mobility of 

the electron is 100 times smaller than the top gate, where mobility is inversely proportioned to the 

gate voltage, as shown in equation 4.1. The voltage requires to turn on the transistor in back side 

gating is more because it emphasizes the thickness of the Si and oxide, whereas in the top gate the 

dielectric thickness is only a few nanometers. Therefore in the nanogap device, we have used the 

top gating to achieve high transconductance by a small change in the gate potential. HfO2 is 

considered as a dielectric material, and it was deposited by using atomic layer deposition (ALD) 

to passivate active material and electrodes. Since freestanding 2D material present on the 

nanogaps, which is robust and sturdy and does not allow to interact with the substrate after HfO2 

layer, the metal layer and for bioelectronics application linkers and antibodies.   

4.9 TEM of cross-section 

To further verify the MoS2 is suspended after coating HfO2 and metal electrode on the top 

of the nanogaps, we have done cross-section TEM imaging by fabricating TEM nanogap sample 

as shown in Figure 4.10 (a). In this experiment, a FIB/SEM dual system with a high resolution of 

(1 nm) transmission electron microscope with 40-120 kV range was used to create the sample. 

This type of sample preparation is most commonly known as FIB Lamella preparation, where SEM 

and FIB are arranged in 52° with each other. The sample preparation involves i) deposition of Pt 

on top of the sample, ii) milling top and bottom wedges to make the L-shaped bridge, iii) mounting 

the super sharp needle to the TEM sample and iv) Mount the wedges sample to the TEM grid to 

take the cross-section images. In this technique, a rectangular window of the Pt layer (10μm × 2μm 
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× 300 nm) deposited on the selected area, as demonstrated in Figure 4.10 (b). The Ion-beam was 

set to standard deposition setting at 30 KV and 0.5 nA. The Pt island helps to recognize the 

assigned area to be milled and acts as a protective layer. Afterward, the milling has performed 

around the Pt island, it is important to make sure these highlighters are placed a few microns away 

from the island to protect from ion-beam damage as shown in Figure 4.10 (c). The sample is tilted 

by 52° toward the ion-beam for etching the backside and front side milling with a thickness of 

20μm and 15μm respectively, as illustrated in Figure 4.10 (d). This milling is achieved in a few 

sequences of steps moving away from the Pt island. It takes about 30 min and creates a step pattern 

Figure 4.10: (a) A device with multiple nano gap electrodes, (b) Deposition of multiple Pt layers 

to form a 10μm × 2μm  island, (c) Add markers to milling back and front side of the Pt deposition, 

(d) Sequences of milling makes trances, (e) L-Shaped milling done and lamella is free standing, 

(f) Micromanipulator carefully picks the lamella and welded to the TEM grid, (g) Slow thinning 

of the sample to get rid imperfections during milling, (h) cross section images after fine thinning 

and (i) high magnification cross-section images shows a nanogap of 10 nm. 
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on the milled area. Once these trenches are formed, we have wedged the left side and shrill the 

bottom area to achieve the L shape of the milled sample (lamella) as shown in Figure 4.10 (e). 

Afterward, this lamella is welded on the manipulator and rest of the attached area is etched out to 

attain freestanding sample. Now the sample is carefully welded on to a TEM grid location, as 

shown in Figure 4.10 (f). Further milling was carried out to achieve appropriate thickness for TEM 

imaging as well as it removes the contamination came from welding, as shown in Figure 4.10 (g). 

The sample is then rotated by 90° to check the cross-section/plane view. Figure 4.10 (h) & (i) 

represents the SEM images of 10 nm gap between the electrodes, where MoS2 and HfO2 are 

suspended on it.  

After making the cross-section TEM grid, we have performed transmission microscopy on 

the crystalline structure of the suspended MoS2 film on the top of nanogaps. Figure  4.11 (a) 

represents the TEM image of the cross-section, where 2D MoS2 is suspended between 10 nm of 

the gold electrodes even after coating of the dielectric layer and thick Pt metal. This image 

illustrates that the nanogap provides a very high mechanical strength to the atomic layer and shows 

the feasibility of the top gate transition. To further evaluate the image, we have performed the 

EDAX mapping to confirm the MoS2 and HfO2 are suspended in between the source and the drain. 

Figure 4.11 (b) represents the spatial distribution of Hf, Mo, Au was observed in EDAX mapping 

of the device region, thus confirming that MoS2 is suspended in between the electrodes. Whereas 

Figure 4.11 (c), (d) & (e) shows the individual elemental mapping of the elements. This experiment 
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confirms that the nanogap provides strength to allow the use of top gating by eliminating the 

scattering phenomenon from the substrate. 

4.10 Electrical characterization of suspended TMDs 

After confirming the atomic layer are suspended in between the nanogaps and doesn’t have 

any scattering effect even though the coating of the dielectric layer. The electrical properties of the 

p-FET WSe2 and n-FET MoS2 channel are performed by applying gate potential from the metal 

electrode deposited on the top of the oxide layer. Figure 4.12 (a) shows the p-FET transfer curve 

(IDS-VTG) by applying the gate voltage from 1.0 V to -1.0 V at voltage 100 mV. Whereas, the n-

FET transfer curve of channel material MoS2 as represented in Figure 4.12 (b), where top gate 

voltage sweeps from the -1.5 V to 0.5 V. It is interesting to find that, WSe2 creates the p-type of 

the transition with the gold electrode, where holes are the majority carrier (discussed in section 

3.4.2). According to these two-transfer curves (IDS-VTG), 2D WSe2 i.e. p-FET shows the higher 

Figure 4.11: (a) TEM image of the cross section of suspended 2D material (b) EDAX overlay 

image of Mo, Au, and Hf, elemental mapping in the TEM instrument of (c) Mo (d) Au (e) Hf. 
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magnitude of the current than the n-FET MoS2, where threshold voltage (VT) is found to be-0.37 

V (p-FET) and -0.6 V (n-FET). As compared to the bottom gate, this is one order magnitude 

smaller i.e. top gate requires less power than the bottom gate to turn ON the device. The SS of 

these two transistors is found to be 88 mV/dec (p-FET) and 74 mV/dec (n-FET), which is far 

smaller than the back gating, which represents the suspended 2D FET is fast in response. The turn 

ON/OFF ratio of WSe2 and MoS2 channels as a top gate transition was found to be 108 and 108. 

Figure 4.12 Top gate I
D
-V

BG
 transfer curve of the suspended at 100 mV of (a) WSe

2
 (b) MoS

2
; (c) 

top gate I
D
-V

DS
 charaacteristics of  WSe

2
 and MoS

2   
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The mobility of the electron in the n-type is 1.2 cm2/Vs and the p-type transistor is 1.4 cm2/Vs 

calculated by equation 4.1, where capacitance is found to be 1.02 µF/cm2. However, this is not the 

intrinsic mobility of 2D TMDs in nanogap channel length. To achieve real mobility, we have to 

consider the contact resistance between the metal and the semiconductor. Afterward, to evaluate 

the contact resistance, we have performed the IDS-VD characteristic at a different voltage, as shown 

in Figure 4.12 (c). It is found that the WSe2 possess holes current, which flows by applying the 

negative potential at the gate, whereas the positive potential activated the MoS2 channel where 

majority carriers are electrons. To further evaluate these transistors, we have fabricated the inverter 

circuit by using 2D NMOS and PMOS. The circuit diagram of the inverter is shown in Figure 4.13 

(a) subset, where VDD is connected to the PMOS and ground is connected to the NMOS. Constant 

voltage (VDD and ground) is provided by the electrometer, whereas the output was measured by 

the source meter. In this measurement the negative voltage turn ON the PMOS, which is connected 

to the 100 mV source, whereas at positive potential turn ON the NMOS, which is connected to the 

Figure 4.13: (a) PMOS WSe2 and NMOS MoS2  suspended inverter where negative input 

potential gives positive output and positive input provides negative output 



www.manaraa.com

 

 

70 

ground i.e. 0V. This is the first type of the integrated circuit that is fabricated by the 2D suspended 

MoS2 and WSe2 atomic layer on the top of the nanogaps represents the next-generation electronics, 

where scalability is possible due to small channel length and no scattering effect enhance the 

mobility and the SS.  

4.11 Summary and conclusion 

In this chapter, a new technique of the photolithography “self-assembly” was adapted to 

achieve nanogaps between the metal electrodes. Here, few parameters have optimized while 

fabrication such as lift-off resists thickness, rpm rate of spinning photoresist, baking, developing 

photoresist, avoiding the residues during fabrication and most important optimization thickness of 

metal electrode layer. Nano-spacing between electrodes only depends upon the thermal expansion 

of the chromium. Therefore it is important to maintain the temperature of wafer for overnight. In 

this case, more the temperature bigger the spacing between two electrodes, RT showed a gap 

between 10 nm to 60 nm, whereas 60ºC exhibited near about 100 nm. Nano-gaps cannot be seen 

via microscope therefore prior to transferring the 2D material open/short circuit characterization 

technique is carried out. I-V between two electrodes is measured in the probe station; if the current 

is not flowing from two electrodes (open circuit), then nanogap is present in those electrodes. 

After achieving the nanogap electrodes, we have developed a novel way to transfer 2D material 

by a dry stamping method. These dry stamping methods allow us to transfer the 2D material on 

the specific area without any wet contamination. Later, to check the 2D material is not sagging or 

touching to the substrate, we have performed AFM mapping, SEM on the top of nanogaps, dark-

field spectroscopy, and Raman mapping. These characterizations illustrated that the nanogaps 

provide suspension as well as mechanical strength to the 2D materials, which do not allow to 

interact with the supporting substrate. After confirming the 2D material are sturdy on the top of 
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the nanogaps, we have deposited 25-30 nm HfO2 and then metal gate electrode for top gate 

transition. To further evaluate the 2D materials are not touching after coating of the HfO2 and 

metal layer, we have performed the TEM of the cross-section. In this technique, the TEM sample 

was made from the ion beam and FIB, which demonstrated the 2D material are intact and 

freestanding between two electrodes, even the coating of the HfO2 and gate metal. 

The suspended 2D material on the top of nano-gap shows higher electron current transport 

by reducing scattering effect from the substrate morphology as illustrated in FET characteristics. 

For further evaluation, we characterized suspended ID-VTG transfer curve of MoS2, which shows 

the SS of 66 mV/dec, which is near to ideal condition and the mobility 1.2 cm2/Vs. ID-VDS at 

different gate voltages demonstrates that current is linear with respective the bias voltage, because 

of the no influence of the supporting substrate. Afterward, we have fabricated 2D material inverter 

with NMOS MoS2 and PMOS WSe2. This is the first type of suspended 2D material electronic 

circuit, which shows the high Vdd by applying a low voltage and low Vdd by applying high voltage. 

With this characterization, we can confirm that the substrate influence of single-layer 2D material 

is very prominent, and it can affect the electrical performance reliability significantly. Therefore, 

suspended 2D material devices can be advantageous in future microelectronic ICs and sensors by 

improving mobility, reliability, and the response time. 
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CHAPTER 5 SENSING FROM SUSPENDED 2D FET DEVICE 

5.1 Introduction 

Analogous to graphene 2D materials such TMDs are well known for there functionality in 

the semiconductor industry. Form these TMDs selenide, and sulfide-based 2D materials are well 

studied in the domain of FET biosensing applications. However, from all 2D TMDs, MoS2 is found 

to be a promising candidate due to the biocompatible in nature, whereas selenide based TMDs 

(WSe2 and MoSe2) are investigated as carcinogenic [129]. Therefore, MoS2 is becoming the most 

studied material in the field of bioelectronics and biosensing applications due to the high surface 

to volume ratio, and pristine structure, which makes it malleable to present fabrication techniques 

. MoS2 based sensor in FET regime illustrated promising candidate in future of the sensing 

application. Such devices change their transconductance by changing the surface potential by 

biomolecule. The surface charge creates the field on the MoS2, which alter the threshold voltage 

of the device according to the Nernst equation, which can implement to measure the concentration 

of the target analytes. These type of architecture are label-free sensing and employed for detecting 

the pathogens, proteins, DNA, and other biomolecules. 

Due to the high fragility of the 2D materials, it requires an insulating supporting substrate, 

which does not interact with the transition of the electron. However, the supporting substrate 

uneven morphology scatters the electron, and trapped charges create the leakage and reduce the 

overall mobility. Therefore, when FET biosensor built on the supporting substrate, it provides an 

unreliable response in every single device. The other significant parameter, which dictates the 

sensitivity of the FET based sensor is subthreshold swing (SS). The SS and sensitivity relation is 

given by 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 10
(∫

1
𝑆𝑆

𝑉𝑔𝑓

𝑉𝑔𝑖
.𝑑𝑉𝑔)

− 1 … … … … … . . (5.1) 
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Where 𝑉𝑔𝑓 and 𝑉𝑔𝑖 are the final surface gate potential and the initial surface gate potential 

respectively before and after the attachment of the target analytes. From this equation, it is clear 

that the lowering the SS will increase the sensitivity. However, in the supporting substrate due to 

the scattering phenomenon, the requirement of the surface potential is high to drive the electron 

from 2D MoS2 atomic layer. The higher magnitude of the surface potential increases the SS and 

reduce the sensitivity. Therefore, it is essential to eliminate the scattering phenomenon from the 

substrate for reliability and to enhance the sensitivity of the sensor. 

Given the importance of the sensitivity and reliability issue, we have fabricated the 

suspended 2D MoS2 devices (fabrication and FET characterization discussed in chapter 4) via 

nanogaps. These nanogaps provide strength to the 2D materials and don’t allow to interact with 

the supporting substrate even after depositing dielectric layer and the linkers and antibodies for 

selective sensing. It is noted that apart from dielectric layer different polymer, functional group 

and lipids can be used to cover channel, which is called “effective layer” [130, 131]. The effective 

layer is used to achieve specificity so that the other non-specific biomolecule cannot directly get 

absorbed on channel material. However, most of the specific molecules such as linkers and 

antibodies functionalize directly on bare channel surface which creates defects on the material. 

Figure 5.1: (a) Image of biosensor device with Source, Drain, and Gate (Ag electrode) 

connection (b) Schematic of Biosensor with E-coli and antibodies.  
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These defects bring a large variation in response. Moreover, when linkers/antibodies directly 

attached to the bare channel, the transduction mechanism is the combination of the electrostatic 

gating, direct charge transfer, and mobility modulation. Therefore, it's desirable to eliminate the 

density of defects by covering bare channel material with insulating material and then functionalize 

linkers and antibodies on the top of the insulator [15]. HfO2 is used as a dielectric material, which 

is deposited via Atomic Layer Deposition (ALD). Afterward,  macro fluidic storage is fabricated 

using Polydimethylsiloxane (PDMS) for encompassing electrolyte droplets, which is placed 

precisely on the top MoS2 triangle covered with HfO2. A reference electrode (Ag/AgCl) is used to 

apply bias through the electrolyte for stabilizing the process and better control of the operation 

under the biosensor regime, as shown in the optical image of Figure.5.1 (a) [132]. Figure. 5.1 (b) 

represents the schematic structure of the suspended MoS2 FET biosensor by selective detection of 

the E. coli bacteria. Thus, this structure of suspended 2D FET is advantageous for label-free and 

unambiguous transconductance from target biomolecule only.  

5.2 Ionic gating of suspended FET  

The electrostatic effect of MoS2 FET investigated to compare the electrical performance of 

the suspended devices. Initially, current-voltage (I-V) characteristics were evaluated by applying 

different gate voltages (back gate and ionic gating) of fabricated suspended devices in a dry and 

wet environment. Figure 5.2 (a) illustrates the ID-VBG curve of free-standing MoS2 at 100 mV bias 

voltage (VDS), where suspended channel length is ~90 nm. The suspended device represents 

excellent ON/OFF ratio 107 and threshold voltage (VT) 3.9 V as compared at room temperature. 

The improvement of the VT, i.e. switching of the device at low voltage as comapare to the 

supporting one (discussed in chapter 3) is due to the elimination of the supporting substrate. The 

holder substrate confines the electrons mean free path by scattering as well as trapped charges on 
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the surface [133]. Figure. 5.1 (a’) represents the ID-VDS characteristics at different VBG (-10V to 

30V). In this case, the VDS varies from the 0 mV to 100 mV and output current shows the linearity 

with the input voltage, which confirms that MoS2 has ohmic contact with the Au/Ti contacts. 

Suspended FET displays better VT and an ohmic contact with metal in back gate voltage 

characteristics as compare to supported one discussed in chapter 3, but due to the high power 

consumption, it is not feasible to use in biosensor domain. Therefore, we have used a thin dielectric 

Figure 5.2: (a) back gating of suspended MoS
2
 with 90 nm channel length (b) Ionic gating of 

suspended MoS
2
. Current-drain voltage characterization (a’) Suspended MoS

2
 with back gating 

from -10 V to 30 V. (b’) Suspended MoS2 with ionic liquid gating from -1 V to 1V.  
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layer of the HfO2 on the top of the channel and studied the ionic gating effect on the suspended 

MoS2 channel as shown in Figure 5.2 (b) and (b’). Phosphate buffer solution as an electrolyte has 

been used for the ionic gating measurements by transporting drop in macro fluidic storage. ID-VLG 

analysis of suspended ionic gating FET displayed impressive Subthreshold swing (SS) 70 mV/dec, 

which is near to ideal at room temperature as well as the ON/OFF ratio (107) and VT (-0.29 V). 

Low SS, threshold voltage, and elimination of substrate scattering make these type of the FET 

structure more sensitive as well as consistence with better gate controllability in a wet 

environment.  

5.3 pH sensing 

After achieving excellent performance in the ionic gating effect, the suspended device 

investigated by changing the pH of the electrolyte solution. The pH sensing strongly depends upon 

the proton (H+) present in the electrolyte solution react with the OH group on HfO2 surface, which 

causes the protonation and deprotonation, as shown in Figure 5.3 [134]. Depending upon the pH 

value of the electrolyte solution, the dielectric surface charge of the suspended FET varies, a lower 

pH value protonates the surface by generating OH2
+ on the HfO2 whereas the higher pH value 

deprotonates the surface by extracting H+ [135, 136]. The surface potential change can be related 

to the capacitance between the dielectric layer and the semiconductor channel, which is given as 

𝑑∅𝑠

𝑑𝑝𝐻
= −2.3𝛼

𝑘𝐵𝑇

𝑞
… … … … … (5.2) 

                                              𝛼 = (2.3
𝑘𝐵𝑇

𝑞2
.

𝐶𝑠

𝛽𝑠
+ 𝑞)

−1

… … … … … (5.3) 

 

Where ∅𝑠 is defined as the surface potential on the dielectric layer, KB is the Boltzman constant, 

T is temperature, q is the charge of the electron, 𝛽𝑠 intrinsic buffer solution capacity, and 𝐶𝑠 is the 
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electrical surface capacitance. According to the Nernst equation, the ideal shift in the threshold 

voltage on the dielectric surface is found to be 59.3 mV/pH at 300K. When the 𝛼 tends to 1 at 

room temperature, then the change in potential on the dielectric from initial to final pH value will 

be ideal i.e. 59.3 mV/pH.  

Figure 5.4 (a) represents the drain current (ID) (100 mV bias voltage) at different pH value 

(3, 5, 7, and 9) by changing the electrolyte gate voltage (VLG). It is found that the VT of ID-VLG 

curves shifts to the positive side from low to high pH due to the negative charge developed on the 

dielectric surface. The shift in ΔVT found to be 59.1 mV/pH, which is satisfied the Nernst limit at 

room temperature, i.e. 59.3 mV/pH and agree with early studies of ISFET characterization on HfO2 

[137, 138]. Therefore, HfO2 does not require any functionalization for pH sensing as compared to 

the SiO2 whose change in threshold voltage found to be 30-40 mV/pH [139, 140]. Figure 5.4 (b) 

represents the sensitivity of the pH at three different regions (Subthreshold, saturation, and linear), 

which is defined by the equation (5.4), where Sn is the sensitivity of pH, IpH1 and IpH2 are the drain 

current achieved from two different pH values (where pH1>pH2). 

Figure5.3: Schematic of protonation and deprotonation on HfO
2 

substrate. 
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𝑆𝑛 =  
𝐼𝑝𝐻1−𝐼𝑝𝐻2

𝐼𝑝𝐻2
× 100 … … … … . (5.4)                      

The sensitivity at subthreshold region found to be much higher because of the drain current is an 

exponential function of the gate voltage, whereas the saturation and linear regions are the quadratic 

and the linear with a change in gate potential. In a suspended device, the sensitivity at subthreshold 

region was found to be ~876 from pH 5 to 6 and ~880 from pH 7 to 8 respectively, which is far 

better than the previous reports of MoS2 FET biosensor on the supporting substrate [16]. The 

suspended MoS2 FET possesses higher sensitivity than supported one because of the lower SS, 

where SS defined as the 

𝑆𝑆 = 𝑑𝑉𝐿𝐺 𝑑 log10 𝐼𝐷⁄ … … … … … . (5.5) 

This equation elucidates that the change in subthreshold current by one decade is a function of the 

applied gate voltage. Whereas, the consistency in the sensitivity of suspended device at two 

different ΔpH range is due to the elimination of the external scattering from the supporting 

substrate. Figure 5.4 (c) represents the threshold voltage and current on the suspended device at 

Figure 5.4: pH detection of suspended MoS
2
 FET (a) I

D
-V

LG
 curve of different pH concentration 

on the suspended MoS
2
 (subset: Linear graph of I

D
-V

LG
). (b) Sensitivity of pH in subthreshold, 

saturation, and linear regions from pH 5 to pH 7. (c) experimental threshold voltage of suspended 

MoS
2
 FET from pH 3 to pH 9 (Left-axis); experimental current corresponds to threshold voltage 

(Right-axis).   
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different pH value, which satisfy the nearnst eqaution i.e. change in the threshold voltage is 59,1 

mV/pH. 

5.4 Bacteria sensing from suspended FET 

One more time suspended FETs are fabricated as described in the fabrication section. To 

specifically detect the E. coli bacteria from the buffer solution (pH=7.4), linkers were immobilized 

on the top of the HfO2. For evaluating the bonding of the linkers with oxide surface, di-thiol and  

(3-Aminopropyl)triethoxysilane (APTES) have used followed by glutaraldehyde treatment and 

antibodies immobilization. From two linkers molecules, APTES has shown promising ID-VLG 

curve shift while detecting bacteria as compared to the di-thiol. Initially, for finding a more 

sophisticated way to immobilized the biomolecule to achieve maximum change in conductance, 

we have considered two different types of linkers (i) silane and (ii) dithiol, which are well known 

in MoS2 biosensor domain and commonly functionalize on the oxide and chalcogen surfaces [92]. 

Figure 5.5: I
D
-V

LG
 curve at constant bias 100 mV (a) APTES linkers with antibodies (Blue), 

100 CFU/mL E-coli bacteria (Magenta) (b) Dithiol linkers with antibodies (Black), 100 

CFU/mL E-coli bacteria (Red)  
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In general, the silane group on the oxide surface generates the silanol group, which tends to be a 

strong base for hydroxyl linkages between the HfO2 and silane. After heating, it creates stable 

polymeric siloxane linkages [141]. In the second hand, dithiol does not create any bond with the 

oxide group, and it might be washed away after rinsing the surface. Therefore, the bacteria were 

trapped on the silane-based linkers and change the conductance more as compare to the dithiol, 

where there was no binding of the bacteria as shown in Figure 5.5 (a) and (b).   

It is interesting to see that after functionalization of the APTES/glutaraldehyde linkers on 

the surface of the HfO2, a small shift of the ID-VLG curve illustrated. The shift in the transfer curve 

is due to the MoS2, which is the n-type of the semiconductor and possesses an electron as a majority 

carrier. In MoS2 FET, when HfO2 surface was modified with APTES, the magnitude of the current 

increased due to the generation of the positive charge on the dielectric surface.  The APTES is 

Figure 5.6: Inducing of electron by APTES molecule (a) schematic of the APTES molecule 

and the equivalent dipole (b) I
D
-V

LG 
curve at V

DS
 100 mV of buffer solution (Cyan) and 

functionalization of APTES (Red) 
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covalently attached with the OH group on the surface of HfO2 and amine end is away from the 

surface, which implies that more electropositive end of the APTES molecule is near to the 

dielectric surface as shown in Figure 5.6 (a) [142]. Therefore, positive potential build on the HfO2 

layer after surface modification with APTES that induce more electron in the suspended MoS2 

channel and increase the magnitude of the current as illustrated in Figure 5.6 (b). After achieving 

the linkers and antibodies, the overall process flow of the linkers binding, antibodies 

immobilization on suspended MoS2 FET through macro storage fluidic channel to detect E. coli 

was optimized as shown in the schematic of Figure 5.7 [143, 144]. Initially, the suspended device 

was absorbed into APTES for 2 Hrs in the mixture of ethanol/water followed by the cleaning of 

the chip by ethanol and blow-dried. Then, APTES functionalized chip was immersed in 

glutaraldehyde solution for approximately 1 Hr. Afterward, E. coli antibodies were incubated to 

the suspended chip in 0.05 M PBS solution for 2 Hrs. at room temperature.        

The ID-VLG transfer curve of the linkers, antibodies, PBS buffer solution, and the 100 

CFU/mL of E. coli bacteria was performed as demonstrated in Figure 5.8 (a). It is essential to 

introduce a buffer solution again after antibodies immobilization to confirm there is no change of 

conductance (Cyan curve in Figure 5.8 (a)). A  shift found in ID-VLG curve on the left side after 

incubation of 100 CFU/mL of E. coli (Magenta curve in Figure 5.8 (a)).This illustrated the current 

Figure 5.7: Schematic diagram of self-assembly process for immobilization of E-coli bacteria 

on HfO
2 

surface.  
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in the MoS2 channel deteriorated due to an increment of hole concentration induced on the 

dielectric surface by highly negative charged bacteria wall  [53]. After achieving appreciable 

performance from suspended MoS2 FET device, different E. coli concentrations ranging from 0 to 

103 CFU/mL were prepared and used for detection. The increase in the concentration of the 

bacteria leads to the decrement of the MoS2 channel conductance. For buffer solution, ID at (VLG 

= 0V) is illustrated 0.3 µA, whereas 10 CFU/mL shows the current response 0.274 µA, the change 

in the conductance of freestanding MoS2 found to be ~9% with a low concentration of the bacteria. 

The change in conductance for 100 CFU/mL and 103 CFU/mL with buffer solution illustrated 18% 

and 25% respectively, as shown in Figure 5.8 (b).  

Figure 5.8 (a) I
D
-V

LG
 curve of SAM process at 100 mV bias; Functionalization of APTES (Red), 

immobilization of E-coli antibodies (Blue), buffer solution 0.01 M PBS solution of pH 7 (Cyan), 

and detection of E-coli bacteria of 100 CFU/mL (Magenta). (b) I
D
-V

LG 
characterization of E-coli 

bacteria from 0 CFU/mL to 10
3

 CFU/mL.  



www.manaraa.com

 

 

83 

Another essential factor in 

biosensor domain is the selectivity, 

which attributes the other bacterial 

strain should not be attached with E. 

coli antibodies to achieve false signal. 

Therefore, Pseudomonas aeruginosa 

(P. aeruginosa) bacteria (100 

CFU/mL) were considered to 

measure the ID-VLG signal by keeping 

VDS = 100 mV.  P. aeruginosa 

bacteria did not show any change in 

conductance as compared to the E. 

coli (100 CFU/mL) as shown in Figure 5.9 (a) after the incubation of 1 Hr. P. aeruginosa bacteria 

was not able to bind the customize E-coli antibodies (IgG) and fail to create enough field to shift 

the transfer curve.  

After checking the shift in the ID-VLG curve and selectivity by the other bacteria, it is 

important to measure the sensitivity of the 2D suspended sensor. The sensitivity of the biosensor 

is defined as shown in equation (5.6), 

𝑆𝑛(𝑐𝑓𝑢/𝑚𝑙) =  
𝐼𝑏𝑢𝑓𝑓𝑒𝑟−𝐼𝑛(𝐶𝐹𝑈/𝑚𝐿)

𝐼𝑛(𝐶𝐹𝑈/𝑚𝐿)
× 100 … … … … . . (5.6)               

Where Sn(CFU/mL)  sensitivity, Ibuffer is a buffer solution current, In(CFU/mL) is current after bacteria 

bind to the FET biosensor. It was found that the shift in ID-VLG is more in the subthreshold region 

as compare to saturation and linear regions, as shown in Figure 5.10 (a). The sensitivity of the 

sensor in the subthreshold region calculated 83.3 for 100 CFU/mL of E-coli bacteria at -0.35 V. 

Figure 5.9: (a) Comparison of I
D
-V

LG 
characterization 

of E-coli and P. aeruginosa bacteria (100 CFU/mL) 

with PBS buffer solution.  
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Whereas in linear and saturation regions, this sensitivity become lower because the voltage in this 

regions are linearly and quadratic function of the change in the gate potential. After obtaining 

higher sensitivity, the other most crucial factor in the 2D FET biosensor is the reliability in every 

fabricated sensor, which can be easily affected by external scattering from supporting substrate or 

the contact resistance from metal. Till now, very few studies are undergone on the reliability of 

the 2D biosensor. In those investigations back gating was used, which has negligible sensitivity 

and requires high power. In our case, we have maintained the constant work function between the 

electrode and the MoS2 in every single device as well as eliminate the supporting substrate 

interaction, which attributes the constant sensitivity in three suspended MoS2 FET at the 

subthreshold region (100 CFU/mL and -0.35 V) as demonstrated in Figure 5.10 (b).  

 

Figure 5.10 (a) Sensitivity measurement of E-coli bacteria at subthreshold, linear, and saturated 

regions. (b) Sensitivity comparison of three suspended MoS
2
 FET devices by immobilizing the 

100 CFU/mL E-coli bacteria. 
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5.5 Summary and conclusion 

The sensitivity presented in this report is found to be impressive as compare to the previous 

reports of biomolecule detection via 2D FET based technology. Graphene-based FET biosensor 

has shown the conductance change of 3.25% at 10 CFU/mL of E-coli, which is almost three times 

smaller than the presented value (9% at 10 CFU/mL) [53, 152]. The detection limits of the 

graphene is due to the zero band gap in nature, which leads to an increase in the off-state leakage 

current and the SS value (SS is inversely proportional to the sensitivity) [153]. Proposed biosensor 

demonstrated the reliable and quantitative detection of pH and biomolecule by eliminating the 

scattering effect from the supporting substrate. A control experiment of pH sensing confirms the 

high sensitivity (~880/pH) as well as constant ID-VLG  curve shift at different pH range (3 to 9). In 

Target Channel materials Detection 

limit 

Sensitivity references 

DNA r-GO (reduce Graphene 

oxide) 

100 nM 2.4 (low) [145] 

vascular endothelial 

growth factor 

r-GO (reduce Graphene 

oxide) 

100 fM 0.3 (low) [146] 

IgG Graphene 290 pM 0.4 (low) [147] 

BSA Graphene 300 nM 0.3 (low) [148] 

E-coli Graphene 10 CFU/mL 3% change in current at 

10 CFU/mL (low) 

[53] 

Streptavidin & pH MoS2 100 fM & pH 196 & 713 (High) [16] 

tumor necrosis 

factor-α (TNFα) 

MoS2 60 fM 0.19 μA mL ng−1 

 (Moderate) 

[149] 

DNA MoS2 10 fM 17 mV/dec 

(Moderate) 

[150] 

PSA MoS2 375 fM 0.23 nA/ 3.75 nM 

(Moderate) 

[151] 

E-coli & pH Graphene 10 CFU/mL & 

pH 

9% change in current at 

10 CFU/mL & 880 (ultra-

high) 

This work 

Table 5.1: Comparison of 2D FET based biosensor 
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the second hand, FET based MoS2 biosensor has shown promising sensitivity in biomolecule 

detection due to ~1.8 eV bandgap. However, the scattering effect from the supporting substrate 

increases the mean free path of an electron leads to the unreliable output from every single device, 

which is the significant barrier to proliferate this technology in biosensor industries [133]. 

Therefore, elimination of the scattering effect in the proposed biosensor shows the overall change 

of conductance in the 2D film is entirely by the change in concentration of the biomolecule. Table 

5.1 represents a comparison of different 2D material based FET biosensor in terms of channel 

materials, detection limits, biomolecules, and sensitivity. Due to these merits i.e. the involvement 

of the CVD method, direct transfer technique, and optical lithography open the new avenues for 

the bulk fabrication of suspended MoS2 biosensor. 
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CHAPTER 6 CONTRIBUTION AND FUTURE OUTLOOK 

6.1 Summary of contribution 

In spite of the excessive research work on the 2D materials in the last decade, still we 

lack a practical application which has a scalable process flow and reliable output from every 

single device. These issues are aroused due to the several factors (i) oxidation of the 2D material 

in the environmental condition, which reduces the overall conductivity (ii) Scattering effect 

from the supporting substrate, which brings reliability issues (iii) contact of 2D materials with 

metal, which affect the electron tunneling. These are some important aspects that are hindering 

2D technology to commercialize the product at an industrial level.  

Given the importance of the reliability and robust process flow issues, this research work 

focuses on the advancement of 2D material-based FET biosensor and microelectronics circuit 

by eliminating scattering effect and encapsulating 2D material to reduce oxidation. 2D channel 

material in the proposed FET biosensor is freestanding in between the nanogaps electrodes, 

which eliminated the scattering phenomenon from the supporting substrate. Nanogaps structure 

for building the highly reliable FET sensor allows applying top gating by depositing another 

insulating layer such as HfO2, which keep intrinsic properties of 2D intact. Secondly, direct 

functionalization of the HfO2 makes this sensor lable-free to detect the target analyte and 

provide unambiguous transconductance without any false results. Also, we kept the work 

function between the 2D semiconductor and metal constant, which provides a similar electrical 

output response from every fabricated device. This novel architecture of the FET eradicated all 

the possible factors, which distort the output signal and bring the reproducibility issue in the 

biosensing and microelectronics IC domain. 
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To achieve the above discussed FET architecture, initially, we have synthesized different 

semiconducting 2D TMDs and optimized it crystallinity based on the pressure, temperature, flow-

rate, and amount of the precursors in the CVD process. Afterward, we have shown the process 

flow to fabricate the wafer-scale nanogaps and developed a novel dry stamping method to place 

this material on the appropriate region. The suspension of the 2D materials with and without 

dielectric layer is characterized by AFM, SEM, darkfield, Raman mapping, and the TEM 

spectroscopy. After confirming the 2D TMDs are suspended on the top of the nanogaps, we have 

fabricated NMOS and PMOS device and then inverter to check its feasibility in the 

microelectronics domain. However, selenide based TMDs has a toxic in nature, which hinders to 

make FET biosensor. Hence, CVD grown MoS2 channel material transferred on 

photolithographically patterned nano-gaps to achieve suspension and covered with Hafnium oxide 

(HfO2) as a dielectric material to eliminate direct functionalization on the channel material. 

Proposed biosensor demonstrated the reliable and quantitative detection of pH and biomolecule by 

eliminating the scattering effect from the supporting substrate. This architecture of biosensor has 

a capability to detect the low concentration of biomolecule because of the atomic layer as a channel 

material, scalable due to the involvement of optical photolithography, dry stamping, and CVD 

technique as well as reliable and reproducible due to the elimination of the supporting substrate. 

In Table 6.1, we have compared between different dimension and materials with respective their 

sensitivity, feasibility in bulk fabrication, and reliability with this research.  These merits of 

suspended MoS2 FET makes it promising next-generation sensing device for on-spot detection of 

biomolecule and bioelectronics applications.   
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Dimensions Materials Sensitivity Bulk Fabrication Reliability 

3D (Bulk 

materials) 

Si Low 

✓ Surface to volume ratio 

is low. 

✓ Scattering of the 

electron due to 3D 

structure 

✓ Conceivable due to 

well-matured Si 

technology. 

High 

1D  

(Nano-

materials)  

Si 

nanowires 

High  

✓ Surface to volume ratio 

is high therefore good 

electrostatic effect from 

biomolecules [154]. 

✓ The top-down 

fabrication is costly 

and low production 

yield; 

✓ b) The bottom-up 

approach has a severe 

integrity issue.  

Low 

 CNT High  ✓ Fabrication of CNT 

FET is challenging due 

separation of 

semiconducting and 

metallic nanotubes.   

Low 

2D Graphene Low  

✓ Excellent 

transconductance effect 

due to atomic layer. 

✓ Low sensitivity due to 

semi metallic in nature 

[16]. 

✓ Low-cost mass 

production is 

conceivable due to 

pristine nature of 

graphene. 

Low 

 MoS2 

(Supported) 

High  

✓ Excellent 

transconductance effect 

due to atomic layer. 

✓ High sensitivity due to 

present of bandgap. 

✓ Scattering effect from 

supporting substrate 

doesn’t provide constant 

sensitivity. 

✓ Low-cost mass 

production is 

conceivable due to 

pristine nature of MoS2. 

 

Low 

 MoS2 

(Suspended) 

Ultra-high  

✓ Excellent 

transconductance effect 

due to atomic layer. 

✓ High sensitivity due to 

present of bandgap. 

✓ No scattering effect due 

to freestanding of MoS2.  

✓ Low-cost mass 

production is 

conceivable due to 

optical lithography and 

CVD. 

✓ Patterning on different 

substrate is possible. 

 

High 

Table 6.1: Comparison of Suspended FET with other materials 
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6.2 Future Outlook 

The field of Micro electro-mechanical system (MEMS) sensing and microelectronics has 

marched towards a fine combination between physical world and electronics. According to Yole 

Développement, 2015, the market value of the MEMS sensors shows an aggregate annual growth 

rate of 5–24% for the period 2013–2019 [155]. Further development of such type of semiconductor 

devices implicates towards the exploration of 2D materials in the sensor field. Before the discovery 

of 2D materials, selection of materials in MEMS-based sensor limited, which includes silicon, 

platinum, silver, gold, titanium, etc. These materials limit the sensitivity of the sensors that depends 

upon electrical conductivity, reactivity towards the physical world, and response to convert the 

physical signal into electrical [156, 157]. The emergence of 2D materials starting from graphene 

[47] and MoS2 in the 2000s has significantly changed the direction of the future of MEMS. These 

materials are higher in conductivity, biocompatible, and extremely sensitive and fundamental 

nature of these 2D materials prepare it for fabrication in batch mode. However, due to the 

fundamental properties of the materials easily tailored from the environmental conditions, which 

hinders these technology to bring robust and reliable commercial product. 

This research will be very helpful for building the 2D materials products such as sensors and the 

microelectronics circuits with no influence of any intrinsic factors. We have shown in chapter 4 

possibility of the suspended 2D complementary metal-oxide-semiconductor (CMOS) by 

fabricating PMOS and NMOS inverter. Further, this structure can be implemented in more 

complicated circuits such as 16-bit and 64-bit IC’s and enhance the performance of the operation 

due to high mobility and fast in response. The other application we have shown in chapter 5 is the 

sensing of pH and E-coli from the novel FET structure. However, by changing the specific self-

assembly molecule, we can proliferate this suspended device in the real-time monitoring of 

http://journal.frontiersin.org/article/10.3389/fmech.2015.00015/full#B32
http://journal.frontiersin.org/article/10.3389/fmech.2015.00015/full#B32
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medical, environmental, and industrial domain by integrating with transmission circuits and high 

power batteries.  
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APPENDIXES 

APPENDIX A: MILLIMETER-SCALE LITHIUM-ION BATTERY PACKAGING FOR 

HIGH-TEMPERATURE SENSING APPLICATIONS 

A 1.1 Introduction 

In recent years, electronic industries are breaking previous boundaries of integration and 

functional density towards miniaturization in autonomous self-powered microdevices. These 

micro/nano machines are suitable to operate as well as interconnect in different environments to 

provide, process and store information without having any connection to power grids [158]. The 

autonomous devices should operate continuously without any power obstacle in natural, industrial 

or in-vivo applications of the human body [159-162]. As self-directed systems are shrinking day 

by day, energy storage systems have to be flexible with respect to dimensional constraints so that 

they can be integrated into the miniaturized devices [163]. Therefore, battery is the main power 

source in autonomous system and the improvement of miniaturized energy storage system with 

large volumetric density is of essential importance for MEMS-based sensors that deliver power at 

vigorous environment conditions [164]. However, present miniaturized batteries have several 

serious limitations including areal energy (µAhcm-2), size (around 80 mm2) and thermal stability 

(up to 85oC) [165]. In addition, several micro-sensors acquiring real-time information related to 

pressure, temperature, etc., at extreme environmental conditions demands highly reliable 

rechargeable miniaturized batteries sustaining temperatures up to 100oC to 200oC, works at high 

pressure and deliver power in the order of few mAhcm-2. Thus, miniaturized rechargeable 

batteries which can readily embed with microsystem and works at extreme conditions are a 

requirement of present autonomous devices in various industries.    
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By considering this problem in the account, here we present packaging of miniaturized 

rechargeable lithium batteries by using “3D printing” casings for high temperature (~120ºC) 

autonomous sensing applications. Miniaturized batteries contain electrochemically active 

components which must be protected from moisture, air, and mechanical stresses, therefore, 

packaging the battery components within millimeter configuration is extremely challenging for 

high-temperature applications. In addition, these batteries having millimeter size components need 

to be assembled in the inert atmosphere, which further complicates the process.  Hence, tackling 

previously mentioned issues, a process flow has been developed to fabricate miniaturized batteries 

in the small domain by reducing the number of required components compared to conventional 

coin cell battery. Packaged miniaturized batteries in small geometrical dimension (2 mm to 5 mm) 

show minor self-discharge, long lifetime and high volumetric capacity at high temperature 

(120ºC). Moreover, to show integrability of the miniaturized batteries for typical autonomous 

sensor, room temperature solar cell charging and discharging at 120ºC in terms of different duty 

cycle has been performed.   

A 1.2 Results and discussion  

3D printers are gaining tremendous popularity in almost every industry due to its rapid 

prototyping of parts and machines by using Computer-Aided Design. This additive manufacturing 

technique is simple and shown its potential by manufacturing big houses to small extremely 

complicated human organs [166-168]. Therefore, we utilize “3D printing” technique (Direct metal 

laser sintering) to fabricate miniaturized battery casings by maintaining material properties (316 

Stainless Steel) for electrochemistry compatibility.  This battery casing contains two parts of 316 

Stainless Steel, bottom case to hold the cathode material whereas the top case contains anode 

material, an extrusion has been added to the top case which aids sufficient contact pressure between 
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the anode and cathode material as shown in Figure A1.1. At first, the optimized design had a wall 

thickness of 500 µm in 3 × 3 mm2 domain, which was later reduced to 200 µm in the 2.25 × 1.7 

mm2 size casings illustrated in Figure. A1.1 (a) & 1(b). The requirement of the thinner wall is to 

increase the overall area of the cup which leads towards the increment of battery capacity by 

depositing higher loading of the cathode material. Afterward, the least wall thickness of the battery 

components set as 200 µm in all other dimensions (2mm to 5mm). In addition, 3D metal printers 

have a minimum resolution of 40 µm (±10 µm error) that provide a highly smooth surface in 

millimeter dimension as shown in Figure A1.1 (c) and allow us to reduce the further thickness of 

the wall. Though, it is not feasible to construct battery wall thickness less than 200 µm as it results 

in bending of casings while fabrication.  

The next critical step to fabricate millimeter-scale lithium batteries is choosing epoxy or 

sealant, which would electrically isolate cathode and anode casings and at the same time to bind 

them tightly to regulate liberated electrons for the external circuit. These compounds with specific 

Figure A1.1: Battery casing design of 2.25 ×1.7 mm2 (a) Bottom case or cup for holding cathode 

material (b) Top case or lid for conformal coating of Lithium i.e. Anode (c) optical image of 

metal 3D printed casings 
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formulations are well studied and documented for their thermal and electrical properties to apply 

in the electronic industry [169-171]. However, the compatibility of these thermally stable epoxies 

with battery chemistries is unknown. It is very important to know the stability of selected epoxy 

with electrodes/electrolytes since it involves electrical energy (voltage) along with thermal energy 

which creates issues towards their stability. Hence, it was planned to study the selected epoxies 

(thermally stable) systematically towards battery chemistry by fabricating lithium batteries and 

testing them at a higher temperature. As shown in Figure A1.2(a), electrochemical performance of 

4 mm battery sealed using silicone sealant is studied by conducting charge-discharge 

measurements at a constant current rate of 10 µA in the potential range of 2.5 - 4.5 V. 

Electrochemical test rate was performed on the silicon sealed 4 mm battery in an air atmosphere 

at 120 C. Adversely, the battery is not charged completely due to undesirable side reactions of 

electrolyte/electrodes with atmospheric air.  This kind of parasitic reactions because of silicone 

Figure A1.2: Epoxies optimization with 4 mm battery casings (a) Casings sealed using silicone 

epoxy and charge-discharge profile, (b) Casings sealed using master bond epoxy and charge-

discharge profile, (c) Casings sealed using Urethane epoxy and charge-discharge profile 
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epoxy has not hermetically sealed the battery. Though, silicone sealant is capable of isolating 

cathode and anode compartments electrically even at 120C inside the glove box, however it is 

incompatible with air atmosphere to seal the batteries. This is because of the oxygen permeable of 

PDMS (polydimethylsiloxanes) which is the main composition of the Silicon sealant [172, 173]. 

PDMS has high dielectric constant and preferable candidate for insulating materials, but it allows 

oxygen to penetrate through the surface due to which batteries are incapable to perform in an air 

atmosphere [173]. The next alternative sealant/epoxy for battery applications is on shelf Master-

bond epoxy resin as illustrated in Figure A1.2 (b), the charge-discharge behavior of 4 mm battery 

at 120º C, wherein well-defined charge and discharge plateaus were observed around 3.4/3.0 V. 

The appearance of such a large polarization between charging/discharging plateaus indicates the 

unwanted side reactions from on shelf epoxy which rise the internal resistance. This epoxy resin 

might react with electrolyte while curing at 90 º C for 10 hours by releasing oxygen which reduces 

the movement of ions and increased the internal resistance of the battery. Finally, urethane based 

epoxies are used to seal the batteries as illustrated in Figure A1.2(c), the electrochemical 

performance of 4 mm battery sealed using urethane epoxy has carried out by the C/6 rate at a 

higher temperature. The perfect and well-defined charge-discharge voltage plateaus were 

observed, wherein the appearance of 3.4 V plateaus. Among the different epoxies used to seal the 

mm-scale batteries, cells sealed with urethane epoxy exhibits higher discharge capacity value and 

minimum polarization (less internal resistance). The discharge capacity of such a urethane epoxy 

sealed battery exhibits 62 µAh at 120C with excellent capacity retention. The room temperature 

curing of urethane-based epoxies in 10 minutes makes a perfect candidate for mm battery sealing. 
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In addition, the magnitude of capacity is inferior compared to the batteries sealed with other 

epoxies at same loading of active material, which could be corroborated to the chemical and 

thermal stability of urethane epoxy.  

After optimizing design and packaging epoxy, miniaturized battery fabrication process 

flow is evaluated as shown in Figure A1.3. In the assembling process, 3D printed Stainless Steel 

(SS) shell cup coated with cathode material (LiFePO4/C) by spray ink technique as depicted in 

Figure A1.3(a). After drying out cathode material, separator and electrolyte (Room Temperature 

Ionic Liquid) are injected in the appropriate amount as illustrated in Figure A1.3(b). At Lid side, 

a dielectric layer (100 µm thick Kapton) is placed to insulate top lid from the bottom cup 

demonstrated in schematic Figure A1.3(c). After coating Lid with an insulating material, Lithium 

metal is applied to the extrude inside the glove box, i.e. inert environment as mentioned in Figure 

A1.3(d). Later, these two different prepared components of the battery are embedded together in 

an inert environment. Airtight urethane epoxy which cures at room temperature is applied to the 

exterior sidewalls of the SS casings as shown in Figure A1.3(e). The final optical image of 

Figure A1.3: schematic of assembly process a. Cathode coated on to bottom Stainless Steel 

case by spray ink technology, b. RTIL electrolyte and quartz separator is added to bottom case 

inside the glove box c. Kapton added to top case to insulate top and bottom shell d. Lithium as 

an anode applied on top case projector inside the glove box e. Both b&d sealed together using 

Urethane epoxy f. Optical image of fabricated lithium battery. 
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fabricated 2 mm Li-ion battery by using urethane epoxy, 3D printed casings and optimized high 

temperature active materials as demonstrated in Figure A1.3(f). After curing epoxy, 

electrochemical performance of the packaged battery is tested according to the specification of 

sensors. 

With the successful packaging of miniatured batteries and demonstration of its feasibility 

at 120ºC using urethane epoxy, it is important to further showcase its suitability for sensor 

requirements to use in an autonomous device. In this regard, we programmed our 

Figure A1.4 Duty cycle studies according to sensor applications on 3 mm battery a. 

Charing continuously at 10 µA in potentiostat with discharging current of 15 µA for 400 ms 

(active mode) with base current of 2 µA (sleep mode) b. Charging battery till 3.8 V at 10 µA 

and discharge with respective input active and sleep mode currents c. Charing at 15 µA for 5 

h. by solar cell d. discharge voltage with respective input current of 200 µA for 500 ms (active 

mode) and continuous base current at 3 µA (sleep mode) of solar cell charged 3 mm battery. 
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galvanostatic/potentiostatic instrument in-accordance with the autonomous sensor wake-up 

program [174, 175] requirements and applied on newly packaged 3 mm battery. Figure A1.4 (a) 

reveals the input current conditions during the charge-discharge process where charging at 10 µA 

constant current and discharge current at 15 µA for 400 ms (active mode) in a regular 5 minutes 

interval with 2 µA of base current (Figure A1.4(a) inset). Figure A1.4 (b) demonstrates output 

voltage with respect to the time during the charge-discharge process in which cut off voltage is 3.8 

V. It is noteworthy to know that the performance of 3 mm battery is stable for ~16h. at 120 C 

under given conditions to be used in sensors.  

For any battery control autonomous system, the key challenge is environmental energy 

harvesting particularly solar based ones. In this aspect, solar (Photovoltaic) charging of 

miniaturized 3 mm Lithium battery was tested by using the crystalline photovoltaic module. This 

testing performed as a proof concept for solar charging of batteries which is useful for most of the 

autonomous sensor. After connecting with solar energy, 3 mm battery charged at room temperature 

with a solar cell current of 15 µA for 5 h. as shown in Figure A1.4 (c) and drained it at 120ºC with 

programmed duty cycles. In sensor measurement mode (active mode) 200 µA is taken out for 1.5 

seconds in every 3 mins where all measure data transmitted and then it enters to the sleep mode 

(device is turned off) where 3 µA continuous current is carried out from the battery. The voltage 

drop across the battery is found 3000 Ω in every reading at 120ºC as illustrated in Figure A1.4 (d).  

In these both experiments, fabricated miniaturized batteries have shown minimum load loss and 

ability to charge with solar energy for providing continuous power to high temperature 

autonomous microsystems.    
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A 1.3 Conclusion 

We have developed a facile process using thermally stable electroactive materials and 

packaging components to construct lithium ion batteries with tunable dimensions and operable 

from room temperature to 120 C. Miniaturized components design has optimized meticulously to 

achieve higher capacity and less internal impedance by keeping casing wall thickness 200 µm and 

maintaining proper compression between cup (Cathode) and Lid (Anode). Urethane-based epoxy 

has been categorized from different sealing agents and demonstrated its workability in the lithium-

battery domain. The feasibility of these cells has demonstrated in 3D printed 2 mm to 5 mm scale 

rectangular metal casings by performing electrochemical studies from RT to 120 ºC. The resistance 

of the currently assembled millimeter size batteries (1750 Ω) and traditional coin cell (105 Ω) has 

compared regarding the active loading materials. Self-discharge test has performed with 

millimeter-size fabricated batteries to evaluate load loss with respective time. Sensor duty cycle 

program has carried out to check the expediency of miniaturized batteries for autonomous sensing 

applications at 120ºC, in this test 3 mm battery provided continuous data for 22 hours. This newly 

packaged millimeter batteries also demonstrated its compatibility with energy harvesting (solar 

cell) to provide continuous power to autonomous devices. It is expected that this high-temperature 

battery will be useful in self-directed miniaturized system where direct human control is not 

possible.   
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TMDs such as MoS2 is playing an important role in the field of FETs, photodetectors, thin 

film transistors and efficient biosensors because of their direct band-gap, high mobility, and 

biocompatibility. Despite these strengths, the performance and reliability of such atomic layer are 

easily influenced by supporting substrate. Interaction between the supporting substrate and MoS2 

implies that interface control is vital for performance of devices consisting of monolayer MoS2. In 

particular, the Silicon dioxide (SiO2) supporting substrate has an uneven morphology and is 

chemically active because of trapped environmental gases, unknown functional groups, chemical 

adsorbates, and charges. Thus, adding another layer of MoS2 on the top of SiO2 cannot contribute 

charge transport clearly, which leads to the unreliable function of every single device. To solve the 

interface problem, suspended 2D layer devices have been reported by wet etching silicon di oxide 

underneath the monolayer. Freestanding MoS2 has shown 10 times greater back gate electronic 

mobility than the supporting on the SiO2 substrate. However, the existing SiO2 requires hazardous 

chemical etchants such as hydrofluoric acid (HF), which is difficult to handle and affects the 2D 

film structure and purity. Secondly, freestanding MoS2 sags between the two electrodes because 
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of the high spacing (~ 2 µm), which makes it impossible to coat another layer such as hafnium 

oxide (HfO2) and antibodies on top of monolayer. Therefore, this structure impedes making top 

gate FET biosensors, which allows for only back gating. However, back gate mobility is far lesser 

than the top gate mobility which hinders making a highly sensitive FET-based biosensor because 

the sensitivity of a sensor depends on its mobility.  

In this work, CVD grown MoS2 channel material is transferred on self-assembled 

photolithographically patterned nano-gaps to achieve suspension and is covered with HfO2 to 

eliminate the direct functionalization of channel material. These nano-gap arrays provide 

mechanical strength to the monolayer and do not allow the supporting substrate to touch after 

coating another thin insulating layer as well as linkers/antibodies. HfO2 can be easily 

functionalized by silane-based linkers and antibodies (E-coli antibodies) to bring variation to the 

suspended 2D material by targeting a charged biomolecule (E-coli). In addition, termination of the 

supporting substrate leads to decrement of subthreshold swing which is inversly proportional to 

the sensitivity of the FET biosensor. The proposed FET biosensor has the capability to detect one 

molecule because of its single atomic layer as a channel material, its scalability due to the 

involvement of optical photolithography, and its fast response because of higher mobility.   
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